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Abstract Magnetosheath jets are regions with an extremely large dynamic pressure compared to that of the
background plasma.We present a case study of a magnetosheath jet examining energy conversion processes and
its interaction with the surrounding magnetosheath plasma. To understand the energy conversion processes we
use data from the Magnetospheric Multiscale mission (MMS) to calculate the scalar product of the total current
density J and the electric field (in the electron flow rest frame) Eʹ and the pressure strain interaction term
− (Pα ⋅∇) ⋅ uα. Large energy conversion between the fields and flow is observed at the leading edge of the jet
where a flow reversal and a strong current is observed. TheWalén test suggests that magnetic reconnection may
also occur in this region. Significant heating of the electrons through the compressive channel is observed.
Within the jet itself, the plasma is cooling, indicative of an expansion of the jet as it evolves. The non‐
Maxwellianity of the ion and electron velocity distribution functions are calculated using three different
measures. The non‐Maxwellianity shows spikes for the electrons near the reconnection site, while ions exhibit
higher non‐Maxwellianity at the front of the jet and a smaller value near the peak of the dynamic pressure.
Electrons and ions show similar trends with a time delay, suggesting a relationship between the non‐
Maxwellianity, indicating the different scale sizes present for both species.

1. Introduction
The magnetosheath is a strongly turbulent environment (e.g., Alexandrova, 2008; Narita et al., 2021; Retinò
et al., 2007; Roberts et al., 2018, 2019; Roberts et al., 2022; Vörös et al., 2016), which lies behind the bow shock
where the super‐Alfvénic solar wind is strongly decelerated because of Earth's magnetosphere. Compared to
typical solar wind parameters, the magnetosheath flow speed is lower, the density higher, the ions have higher
temperatures, and fluctuation amplitudes are larger (Artemyev et al., 2022; Bandyopadhyay et al., 2018; Chhiber
et al., 2018; Lucek et al., 2005; Narita et al., 2021). The upstream foreshock region where the solar wind is
magnetically connected to the bow shock is rich in plasma instabilities, large amplitude magnetic waves, and
other phenomena (e.g., Wilson et al., 2014a,b; Turc et al., 2019; Zhang et al., 2022; Turc et al., 2023).

Magnetosheath jets are phenomena characterized by local enhancements in the dynamic pressure that are several
times larger than the ambient dynamic pressure (Archer et al., 2012, 2013; Dmitriev & Suvorova, 2012; Eriksson
et al., 2016; Escoubet et al., 2020; Hao et al., 2016; Hietala et al., 2009; Karimabadi et al., 2014; Karlsson
et al., 2015, 2018; Koller et al., 2022; Němeček et al., 1998; Omelchenko et al., 2021; Palmroth et al., 2018, 2021;
Plaschke et al., 2020; Preisser et al., 2020; Raptis et al., 2022; Tinoco‐Arenas et al., 2022), and can even exceed
that of the ambient solar wind (Plaschke et al., 2013). Typically, jets are also cooler than the surrounding
magnetosheath plasma (Archer et al., 2012, 2013; Dmitriev & Suvorova, 2012; Hao et al., 2016; Hietala
et al., 2009; Karimabadi et al., 2014; Karlsson et al., 2015; Plaschke et al., 2018; Raptis et al., 2020) and have
typical sizes of around a tenth to a few Earth radii (Plaschke et al., 2020). When propagating from their regions of
generation, jets can impact the magnetosphere, exciting magnetic reconnection (Hietala et al., 2018; Ng
et al., 2021), trigger surface waves on the magnetopause (Archer et al., 2013), cause auroral brightenings (Han
et al., 2018;Wang et al., 2018) and ground magnetometer responses (Norenius et al., 2021;Wang et al., 2022) and
can cause the onset of substorms (Nykyri et al., 2019). Jets have also recently been observed in the Martian and
Jovian magnetospheres (Gunell et al., 2023; Zhou et al., 2024). For a detailed review of the magnetosheath jets,
the reader is referred to the reviews of Plaschke et al. (2018); Krämer, Koller, et al. (2025). Recent studies by
Koller et al. (2022, 2023) have also shown that jets are sensitive to large‐scale magnetic structures embedded in
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the solar wind, with fewer occurring during coronal mass ejections and more occurring during high‐speed
streams. The present case study is an example of a jet occurring in a high‐speed stream.

Jets are one of the key processes allowing fast and dense plasma flows to reach the magnetopause. As a result, they
are essential in understanding the solar‐wind magnetosphere coupling. It remains an open question to what extent
jets are relevant for injecting energy into the magnetosheath or potentially generating turbulent structures due to
the velocity shears between the jet and the surrounding plasma (Karimabadi et al., 2014; Plaschke et al., 2018;
Vörös et al., 2023). As jets can travel faster than the magnetosonic speed, some jets (estimated at 13% by Liu,
Hietala, Angelopoulos, Omelchenko, et al. (2020)) are associated with a bow wave (H. Liu et al., 2019). Jets with
bow waves have been associated with proton and electron acceleration (T. Z. Liu et al., 2019; Liu, Hietala,
Angelopoulos, Omelchenko, et al., 2020; Liu, Hietala, Angelopoulos, Vainio, & Omelchenko, 2020; Vuorinen
et al., 2022). In the study of a magnetosheath jet by Eriksson et al. (2016), a strong current sheet was observed at
the leading edge of the jet and was interpreted to be a result of velocity shears in relation to the jet.

This work for the first time aims to provide a case study of a magnetosheath jet with the Magnetospheric Mul-
tiscale mission (MMS) (Burch, Moore, et al., 2016) to investigate possible energy conversion pathways. The
MMS mission is ideal for answering these questions since it has multiple points allowing spatial gradients to be
calculated at small scales and the necessary time resolution to calculate both the electromagnetic work (Zenitani
et al., 2011) and the pressure strain interaction (Roberts et al., 2023; Sarto et al., 2016; Yang, Matthaeus, Parashar,
Haggerty, et al., 2017).

2. Data
We use data measured by the MMS spacecraft on the 27th of January 2017 between 08:06:20 and 08:06:55UT
when the four‐spacecraft tetrahedral constellation was located in the terrestrial magnetosheath at
r = (10.8, − 3.9,1.8) Re in the geocentric solar ecliptic (GSE) coordinate system, and had average inter‐
spacecraft separations of 6 km. The planarity and elongation (Robert et al., 1998) of the constellation are
P = 0.34, E = 0.13, close to a pseudo‐spherical tetrahedron, minimizing the errors for gradient calculation
(Chanteur, 2000). This is a sub‐interval of the burst mode resolution data used by Chasapis et al. (2018) for
turbulence analysis.

Data from OMNI (King & Papitashvili, 2005) for the time interval 08:00‐08:10UT with 1 minute time resolution
are used to estimate the upstream solar wind values. Although not all data points are available from OMNI
therefore a mean of this is used. The OMNI data yield a mean solar wind bulk speed and density of 633 km/s, 4.8
cm− 3, and a corresponding dynamic pressure of 1.6 nPa. The mean magnetic field components are

B⃗GSE = (− 4.2 ,4.2, 2.4)nT. The mean cone angle of the magnetic field θ = cos − 1 (|Bx|
|B| ) is moderate or oblique

with a value of 49°, and varies between 43° and 61°, and the Alfvénic Mach number is 10.6. This makes iden-
tification of low/high cone angle difficult nevertheless this is in the optimal range (30–60°) for jet production for
example, Vuorinen et al. (2019). During this time, the THEMIS B and C spacecraft (Angelopoulos, 2009) are also
located in the solar wind. The mean parameters estimated from THEMIS are consistent with those obtained from
OMNI. The average upstream parameters are characteristic of a high‐speed stream of solar wind which have been
associated with increased foreshock transient formation (T. Z. Liu et al., 2017, 2018) and are favorable for jet
production (Gutynska et al., 2015; Koller et al., 2022, 2023; LaMoury et al., 2021; Plaschke et al., 2013; Vuorinen
et al., 2019). Foreshock transients such as hot flow anomalies (HFAs) and foreshock bubbles are frequently
observed under such conditions and can produce energetic electrons (Raptis, Lindberg, et al., 2025), while the
compressive edge of the HFA, when transmitted downstram it can cause a high‐speed jet formation (Archer
et al., 2014; Raptis, Lalti, et al., 2025; Zhou et al., 2023).

Figure 1 displays the measured data from the interval. During this period, the MMS spacecraft were operating in
burst mode. The ion and electron measurements from the Fast Plasma Investigation (FPI) (Pollock et al., 2016)
were measured with time resolutions of 150 and 30 ms, respectively. Having multiple spacecraft available also
allows the determination of spatial gradients of velocity fields (e.g.,M. Dunlop et al., 1988; M. W. Dunlop
et al., 2002; M. W. Dunlop et al., 2021; Paschmann & Daly, 2008; Paschmann, 1998). Magnetic field data were
measured from the fluxgate magnetometer (Russell et al., 2016) with a sampling rate of 128 Hz, and electric fields
were measured with a sampling rate of 8.192 kHz from the Spin plane double probes (SDP) and the axial double
probes (ADP) (Ergun et al., 2016; Lindqvist et al., 2016).
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Figure 1. Measured data from the MMS1 spacecraft, from top to bottom; magnetic field data from the Fluxgate magnetometer, electric field data from SDP and axial
double probes, ion density from FPI‐DIS, ion velocity from FPI‐DIS, electron velocity from FPI‐DES, ion dynamic pressure Pdyn = 1

2ρu
2 from fast plasma investigation

(black) and the upstream solar wind value fromOMNI (red), the ion temperatures (parallel and perpendicular to the mean field) and energy spectra, the electron temperature
(parallel and perpendicular) and energy spectra. Finally, the magnitudes of the ion and electron vorticity, and the magnitude of the current density are derived from the
curlometer method. The box denotes the sub interval 2017‐01‐27 08:06:27‐08:06:33 where De Hoffmann‐Teller analysis has been carried out.
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At around 08:06:25 UT, an increase in the absolute value of the earthward ion velocity from 200 to ∼500 km/s is
observed. Concurrently, the ion density also increases in this region from 10 to a peak of 30 cm− 3. Consequently,
the dynamic pressure 1

2ρu
2 increases drastically in this region from around 1 to a peak of about 7 nPa. During this

time, there are high energy ions, the temperature anisotropies of electrons and ions are low, and the magnetic field
variance is high, all consistent with a Quasi‐parallel jet classification as discussed by Raptis et al. (2020). After the
jet the absolute value of the Earthward velocity component (and the dynamic pressure) significantly decreases
almost becoming zero, consistent with jets associated to downstream observed HFAs as discussed by Raptis,
Lindberg, et al. (2025).

The dynamic pressure measured by MMS between 08:06:30 and 08:06:45UT becomes larger than the solar wind
dynamic pressure (1.6 nPa from OMNI). One criteria often used is to define a jet is ρmsu2ms > 0.25ρswu2sw (e.g.,
Plaschke et al., 2013), which this enhancement satisfies. By comparing magnetic field measurements at each
spacecraft, we see that this pressure enhancement travels in the negative x direction (not shown), so that the
leading edge is observed first by the spacecraft. Note that the separations sampling rate of FGM is low compared
to the advection time; however, the result is also confirmed with the merged Fluxgate search coil (FSM) data
(Argall et al., 2018; Fischer et al., 2016) which has a sampling rate of 8.912 kHz.

At the leading edge at 08:06:30 UT, we see an increase in the magnetic field strength, fluctuations in the electric
field, some enhancements in the electron parallel (with respect to the mean magnetic field direction) and to a
lesser extent, the ion parallel temperature. This is similar to the event of Eriksson et al. (2016). Within the jet, the
ion temperature is cooler than the surrounding plasma, which is typically observed for jets (Archer et al., 2012,
2013; Dmitriev & Suvorova, 2012; Hao et al., 2016; Hietala et al., 2009; Karimabadi et al., 2014; Karlsson
et al., 2015; Plaschke et al., 2018). The enhanced magnetic field at the leading edge has properties are consistent
with the “magnetokinetic” formation mechanism presented in the numerical simulations of Omelchenko
et al. (2021), which are supported by the spacecraft observations of Raptis et al. (2022). Observationally jets have
a localized turbulent magnetic field enhancement at the leading edge. This pile up allows the shock reformation
process to make the faster and less processed solar wind plasma to be observed immediately afterward.
Furthermore, at the leading edge of the jet the magnitudes of the current density and electron vorticity are
enhanced, and the ion vorticity is fluctuating but slightly elevated. Generally, the electron vorticity has a much
larger magnitude than the ion vorticity. The vorticity and current density in this case are measured using the multi‐
spacecraft curlometer technique to the velocity and magnetic field respectively (M. W. Dunlop et al., 2002). We
will now discuss the possible channels for energy conversion and the two different metrics we use in this work.

3. Energy Conversion Channels
The energy exchange equations for a species α calculated from Maxwell‐Vlasov theory can be written as (Yang,
Matthaeus, Parashar, Haggerty, et al., 2017; Yang, Matthaeus, Parashar, Wu, et al., 2017):

∂tE f
α + ∇ ⋅ (E f

αuα + Pα ⋅ uα) = (Pα ⋅∇) ⋅uα + nαqαuα ⋅E (1)

∂tEth
α + ∇ ⋅ (Eth

α uα + hα) = − (Pα ⋅∇) ⋅uα (2)

∂tEm +
c
4π

∇ ⋅ (E × B) = − E ⋅ J (3)

Where, E f
α =

1
2mαu2α is the fluid flow energy of particle species α, Em = 1

8π(B
2 + E2) is the electromagnetic

energy and Eth
α = 1

2mα ∫ (v − uα)2fα(r,v, t)dv is the internal (or random energy). Pα is the pressure tensor, hα is
the heat flux vector, uα is the velocity, nα is the number density, and q is the charge. Finally, E and B denote the
electric and magnetic fields and J = ∑ Jα is the total current density.

This system of equations describes the energy conversion processes in a collisionless plasma. Note that the
divergence terms on the left‐hand side of the equations are transport terms which move energy from one location
to the other but do not convert between energy types. We note that often in simulation works the transport terms
are assumed to be zero either by integrating over the whole volume and using periodic boundaries (e.g., Yang,
Matthaeus, Parashar, Haggerty, et al., 2017). While the magnetosheath is not an isolated system, measurement of
these terms (i.e., gradients of heat flux) can have large errors due to being calculated from the third order moment
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of the velocity distribution function (VDF) (e.g., Gershman et al., 2015). Nevertheless, the pressure strain terms
do tell us about local conversions of energy which is the goal of this work, rather than energy transport or the total
energy budget. Conversions in energy between types are through two terms. The first is the J ⋅E term, which
quantifies the energy conversion between the field and the flow energy (electromagnetic work in a fluid level
description). Observationally, a measurement of J ⋅Eʹ (also called the Zenitani measure) (Zenitani et al., 2011,
2012) is often used in studies of magnetic reconnection (Bandyopadhyay et al., 2021; Burch, Torbert, et al., 2016;
Phan et al., 2018; Torbert et al., 2018), where the prime denotes that the electric field has been transformed into
the flow frame of species α.

Eʹ = E + uα × B (4)

Hereafter, we resample the electric field measurements to the electron velocity time tags and we used the point‐
wise electron velocity (rather than a mean value) to perform the transformation.

Eʹ(t) = E(t) + ue(t) × B(t) (5)

The current for species α is given as:

Jα = nαqαuα (6)

and the total current density is given as

J =∑
α
Jα (7)

The current density can be measured directly from the FPI measurements (considering ions and electrons
measured by FPI), and the electric field is obtained from the SDP and ADP instruments. For the ion measure-
ments, we resample to the electron time tags and assume that any velocity fluctuations at higher frequencies are
much smaller than the electron velocity fluctuations (e.g., Gershman et al., 2018; Roberts et al., 2022).

The second term responsible for energy changes is the pressure strain interaction − (Pα ⋅∇) ⋅uα (Sarto et al., 2016;
Sarto & Pegoraro, 2018; Yang, Matthaeus, Parashar, Haggerty, et al., 2017; Yang, Matthaeus, Parashar, Wu,
et al., 2017) which can convert energy between the fluid flow energy and the internal energy. This method was
previously applied to data from the Magnetospheric Multiscale mission by Chasapis et al. (2017); Bandyo-
padhyay et al. (2020, 2021) and to simulated data (Pezzi et al., 2019; Yang et al., 2022; Yang, Matthaeus,
Parashar, Haggerty, et al., 2017).

The pressure strain term can be further decomposed as follows (e.g., Bandyopadhyay et al., 2021; Yang, Mat-
thaeus, Parashar, Haggerty, et al., 2017)

− (Pα ⋅∇) ⋅ uα = − pδij∂jui − (Pij − pδij)∂jui = − pθ − Πi,jDi,j, (8)

where p = 1
3Pi,i, θ = ∇ ⋅ uα and Πi,j = Pi,j − pδi,j and Dij =

1
2(∂iuj + ∂jui) − 1

3θδij, where δ is the Kronecker
delta. Through this decomposition, we can express the pressure strain term as a compressive component pθ, also
termed the pressure dilatation, and an incompressive component Πi,jDi,j. Note that we retain the minus sign here
and in the forthcoming plots so that positive values indicate heating. A positive J ⋅Eʹ in terms of field particle
interactions indicates work done on the particles by the fields (loss of energy by the fields and gain of energy by
the particles). Using the multi‐point MMS ion and electron velocities and field measurements, both the pressure
strain terms and the J ⋅Eʹ terms can be evaluated and will now be presented.

4. Results
The largest compression of themagnetic field at approximately 08:06:30UT is preceded by a local minimumof |B|
and a rotation of magnetic field direction with a duration of less than one second. This suggests the presence of a
thin, potentially reconnecting current sheet ahead of the magnetic field that is compressed by the rapidly
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propagating jet similar to the case study of Eriksson et al. (2016). Magnetosheath jets are known to compress
initially thick magnetopause current sheets, thereby enabling reconnection through the dynamic pressure impulse
they exert on themagnetopause (Hietala et al., 2018). However, reconnecting thin current sheets and the associated
ion/electron outflows are also observed within the magnetosheath itself (Phan et al., 2018; Vörös et al., 2017;
Yordanova et al., 2016). In order to determine whether the current sheet in Figure 1 is an undergoing reconnection,
minimum variance analysis was performed to the short time interval between 08:06:27‐ 08:06:33UT which is
denoted by the black rectangle in Figure 1 that encompasses the field reversal.

Figure 2 shows this shorter time interval. Minimum variance analysis (Sonnerup & Scheible, 1998) was used to
determine the LMN coordinate system where L points in the direction of maximum variance of the magnetic field
(in this case it is close to the Z GSE direction.), N points in the direction of minimum variance direction, and M
completes the right handed coordinate system. The frame is well determined with eigenvalue ratios of λ1/λ2 = 31
and λ2/λ3 = 12. In the L direction we see a rotation in both the ion and electron flows in Figure 2b with the ion
flow changing from ∼ − 310 km/s to − 100 km/s and a background flow of ∼205 km/s. A comparison of the
measured electric field in theM direction (green) and the u × B terms is given in Figure 2c. We see that there are

Figure 2. A more detailed look at the boxed area in Figure 1. (a) BL (black) and BN (blue) components of the magnetic field.
The Bz geocentric solar ecliptic (GSE) component (red) is very close to BL. (b) Ion and electron outflow velocities, uiL and
ueL. The background flow velocity in the L direction is ∼205 km/s. (c) Out of plane reconnection electric field EM. For
comparison − (ui × B)M and − (ue × B)M are also shown. The difference between EM and u × B terms indicate that non‐
ideal effects take place near the reconnection X line. The ions are more demagnetized than electrons. (d) A cartoon showing X, Z
GSE and LMN directions. (e) The reconnecting current sheet is moving with VHT (Hoffmann Teller) velocity. Because of this
motion, the spacecraft first observes − BL, − VL, and +BN , then +BL, +VL and − BN values (Figures A a, b). We can see both
+L, − L directional outflows because VHT has a significant − Z GSE directional component. So the reconnecting current sheet is
moving from +Z toward − Z and toward Earth. The reconnection electric field EM is negative near the reconnection X line.
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some non‐ideal effects where the ions and electrons become demagnetized however they approximate the large
scale electric field well.

We found that the local current sheet coordinate system is well determined and the field reversal, or outflow
direction is close to GSE Z direction. In fact, the reconnection outflows are seen in ue,L and ui,L components
(Figure 2 panels b). A further test for reconnection is accomplished by finding a moving coordinate system, the
so‐called de Hoffmann‐Teller frame (Khrabrov & Sonnerup, 1998), in which the electric field vanishes. If it
exists, it can be found from plasma bulk velocity (u(t)) and magnetic field (B(t))measurements by minimizing the
equation EHT = − VHT × B. The velocity V = VHT that minimizes the above expression ensures that |EHT | is
approximately zero, making the magnetic field structure, in our case the current sheet, stationary. In the HT frame
the ion or electron reconnection outflows ui − VHT or ue − VHT should be of the order of the local Alfvén
velocity (e.g., Fargette et al., 2023). VHT can be determined from the measured electric field or from the cross
products of ion or electron velocities and magnetic field. In Figure 3a the measured electric field components are
compared to − VHT × B components and the minimization of the above expression gives
VHT = 287[− 0.87, − 0.18, − 0.47] km/s in GSE coordinates. The scatter of the points around the dashed line
with slope = 1 is relatively large, but the average cross‐correlation coefficient of the three components is high
(cc = 0.86). When instead of the measured electric field ui × B or ue × B are used (not shown), VHT magnitude
changes by ∼20 km/s and the direction by ∼4 degrees. In Figure 2b the scatter plot of Alfvén velocity VA and the
ion reconnection outflow velocity in the HT frame is shown. The observed slope (cc = 0.643) and average
correlation coefficient (cc = 0.766) values are similar to the Walén test results in previously observed recon-
nection outflows in the magnetosheath (Vörös et al., 2017). These results suggest that we observe an ongoing
reconnection in front of the propagating jet.

Figure 4 shows the results of the pressure strain terms, where the magnetic field and the dynamic pressure are
shown for context in panels (a) and (b). In panels (c), the value of J ⋅Eʹ is shown, where the gray shaded area
denotes the uncertainty on the measurement of 0.5 nW/m3 (Ergun et al., 2018). Apart from a small spike at the
leading edge of the jet, the J ⋅Eʹ is low throughout and smaller than the measurement uncertainty. Panels (d–g)
indicate the pressure strain terms, with the lighter shaded areas indicating the measurement uncertainty (Roberts
et al., 2023). We use the spin tone product in the moments data to estimate the pressure strain term accurately,
removing the spin‐related effects from the velocity measurement. We also note some offset in the mean values of
the electron velocity's ue,z component. To reduce the effect of this offset on the gradient calculation, we high‐pass
filter the electron ue,z data before calculating the pressure strain terms. Further discussion of this issue is presented
in the Appendix. The final pressure strain terms are separated (Equation 8) so that the compressive electron and
ion channels − pθ are shown in (d) and (f) and the incompressive − ΠD channels are shown in (g). Throughout the
interval, we see that the incompressible ΠD terms are smaller than the compressive pθ terms. This is often the case
in the highly compressible magnetosheath (Bandyopadhyay et al., 2020, 2021; Chasapis et al., 2018).

Figure 3. (a) de Hoffmann‐Teller frame analysis, the different colors represent the three different geocentric solar ecliptic
components, and the dashed line denotes a line with slope 1. (b) Comparison between the ui − VHT and the Alfvén velocity
components. The colors are the same as in (a).
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The relative values of the J ⋅Eʹ and the pressure strain terms suggest that for this jet, there is very little conversion
of energy between the fields and the flow, while the conversions between the flow and thermal energies are much
larger. The exception here is at the reconnecting current sheet where the J ⋅Eʹ (Figure 3c) is significant, and is
associated with a spike in the − pθ (Figure 3d) of the electrons. We note that this is the case for this particular jet,
other jets associated with wave activity which have been observed for example, by Krämer et al. (2023), would
likely also have significant energy conversion in the electromagnetic channels.

An important thing to note here is that both J ⋅Eʹ and the pressure strain terms are fluctuating quantities with
field/flow energy and flow/thermal energy continuously being converted between different energy types.

Figure 4. (a) Measured magnetic field data, (b) dynamic pressure are MMS (black) and the upstream solar wind dynamic
pressure calculated from OMNI (red), (c) J ⋅Eʹ where the shaded area denotes the uncertainty, (d, e) Electron pressure strain
interaction separated into compressive (− pθ, panel (d), and incompressive (− ΠD, panel (e). The ion (− pθ, black) (f) and (− ΠD,
blue) (g). The gray and cyan areas denote the measurement uncertainty in these quantities.
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However, regarding a given plasma structure, the net energy transfer (instead of instantaneous values) is also
relevant. We present the cumulative sums of the different energy conversion measures to measure the net energy
transfer in Figures 5c and 5d. The cumulative sum at a point is the sum of all the previous data points so that
regions with large or consistent net energy transfers will change while regions with little or no net transfer will
remain flat. We point out that these metrics are sensitive to the time resolution, and that there could be transfers of
energy with smaller timescales than can be measured, or on spatial scales smaller than the tetrahedron. The
tetrahedron scale size is much smaller than the jet size and the time resolution allows many measurement points in
the jet. Furthermore, each point in the pressure strain is constructed with moments of the distribution function,
therefore we expect net transfer of energy to be described well by these quantities.

The cumulative statistics show very little energy transfer in the incompressible channels for ions and electrons. At
the leading edge of the jet, in the cumulative J ⋅Eʹ (Figure 4d), we see an initial slight decrease meaning that the
fields gain energy in this part, followed by a sharp increase to about 20 nW m− 3 until the peak of the dynamic
pressure where the cumulative J ⋅Eʹ reduces. The electron pθ term shows a strikingly similar evolution to the

Figure 5. (a) Measured magnetic field data, (b) dynamic pressure from MMS (black) and the upstream solar wind dynamic
pressure calculated from OMNI (red), (c) the cumulative sum of J ⋅Eʹ , (d) cumulative sums of the electron pressure strain
interaction terms separated in to compressive (− pθ, black), and incompressive (− ΠD, blue) channels (e) the cumulative sums of
the ion pressure strain terms.
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J ⋅Eʹ terms, that is, an increase (indicating heating) at the leading edge and then a reduction after the peak. The
ion pθ is generally smaller than the other cumulative metrics, and heating occurs sooner than the other metrics.

To put these results into context we consider the scalar bulk kinetic energy transport,

Pkin =
1
2
nmpu3

1
D

(9)

to get a power per unit volume from the bulk flow. For this estimation we assume u = 500 km/s, n = 30 cm− 3,
and D = 800 km (e.g., Plaschke et al., 2020). Using these values, we obtain Pkin ∼ 4 nW/m3. For added context
magnetic reconnection have shown energy conversions in the range of ∼4 − 20nW/m3 (e.g.., Bandyopadhyay
et al., 2021). The magnetic reconnection observed here is comparable to some of the lower energy cases studied
by (e.g.., Bandyopadhyay et al., 2021). While this value of ∼4 nW/m3 may seem small in terms of total energy it
is much larger as a cumulative quantity as the energy conversion terms are sporadic, and going between positive
and negative. If we consider the cumulative sum of this quantity for the ions for the interval it is +250 nW/m3,
which is much larger than the energy conversion terms, and consistent with the majority of energy being in the
bulk kinetic energy Krämer, Fatemi, et al. (2025).

To further understand the physics behind the energy conversions observed during this jet event and to identify
where does the free energy go, in Figure 6 we investigate distortions of both ion and electron VDFs by means of
three different non‐Maxwellianity measures, namely,

ϵα = V3/2
A /nα

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

∫ ( fα − gα)
2

√

d3v (10)

from Greco et al. (2012) where the background ion Alfvén speed, VA is used to have a dimensionless quantity.
Another definition of non‐Maxwellianity used by Graham et al. (2021) is

ϵαʹ = 1/nα∫( fα − gα) d3v. (11)

Finally Kaufmann and Paterson (2009) defined a non‐Maxwellianity measure as

Mα = 2(Sgα − Sfα)/(3kBnα), (12)

with S being the kinetic entropy density: SH = − kB ∫ H log H d3v with H = ( fα, gα). In the previous definitions, α
identifies the particle species, n is the number density, f is the measured VDF, g is the associated Maxwellian
distribution with the same density, temperature, and velocity as fα, and kB is the Boltzmann's constant. We note
that Mα is positive definite, having the Maxwellian distribution the maximum entropy. The three measures have
been used in a number of plasma environments and simulations (Graham et al., 2021; Greco et al., 2012; Perrone
et al., 2024; Pezzi et al., 2021; Richard et al., 2025; Settino et al., 2021). While the measures have yielded similar
results when applied to numerical simulations and solar wind data (Perrone et al., 2024; Pezzi et al., 2021), there
are subtle differences which capture different physics. The ϵ measure is related to the enstrophy in phase space
Servidio et al. (2017); Perri et al. (2020) and scales inversely with the number density Graham et al. (2021).
Therefore, when density changes abruptly but plasmas of two different environments and plasmas with different
temperatures interact this measure may be affected. The ϵʹ measure is not affected by the number density in the
same way. Settino et al. (2021) calculated both parameters and good agreement was seen between both mea-
surements during intervals where Kelvin Helmholtz vortices were present and good agreement shows the
robustness of the measurement even when density varies. These quantities are also useful as they allow more
straightforward comparisons with time series than the VDFs themselves. We also point out that while all three
non‐maxwellianity measures give information about deviation from a Maxwellian distribution,Mα quantifies the
contribution of heating/dissipation processes through to the non‐Maxwellianity of the VDF. Note that Graham
et al. (2021) used a Bi‐Maxwellian distribution for the calculations, whereas we use a Maxwellian distribution,
however there is very little difference between the results when a bi‐Maxwellian or a Maxwellian are used in this
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case. This choice was made for consistence as Equations 10 and 12 use Maxwellian distributions. Finally, to
reduce the noise associated with the low count statistics, which can artificially increase the non‐Maxwellianity
(Graham et al., 2021), bins with less than one count have been removed.

A similar trend appears for both ϵα and ϵά in Figures 6c and 6d. At the jet's leading edge, coinciding with peaks in
all three magnetic field components (t≃ 10 s), a localized maximum in electron non‐Maxwellianity is observed,
while the ion non‐Maxwellianity exhibits a local decrease. Concurrently, Figure 5e shows a pronounced increase
in Mi, whereas Me remains low. This suggests that free energy is being channeled into distorting the electron
VDFs, while ions undergo significant heating. Between t = 10 s and t = 12 s, Me increases, and both ϵe and ϵé
exhibit local minima, suggesting the onset of thermalization processes affecting electrons, albeit with a temporal
delay relative to ions. Within the jet, electron non‐Maxwellianities (ϵe and ϵé) rise and, despite fluctuations,
remain elevated above background levels. In contrast, Me remains relatively constant and low. A qualitatively
similar pattern is observed for ions, though enhancements in (ϵi and ϵí ) are more spatially confined.

Figure 6. (a) Measured magnetic field data, (b) dynamic pressure are MMS (black) and the upstream solar wind dynamic
pressure calculated from OMNI (red), (c) the degee of non‐Maxwellianity as defined by Greco et al. (2012) for the electrons
(black) and the ions (blue), (d) the degree of non‐Maxwellianity as defined by Graham et al. (2021) (e) the non‐
Maxwellianity measure M as defined by Kaufmann and Paterson (2009). The colored vertical dashed lines indicate times of
interest where the velocity distribution functions are shown in Figure 7.
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Figure 7 shows the VDFs for ions and electrons during the passage of the jet. We have selected several distribution
functions at several points of interest which are guided by the measured quantities e.g. dynamic pressure/magnetic
field magnitude/non‐Maxwellianity. The labels correspond to the dashed vertical lines in Figure 6. The VDFs are
put in a coordinate systemwhere the x axis points in themagnetic field direction and the bulk velocity direction is in
the x‐y plane of the plot. The ion VDFs show minimal non Gaussianity before and after the jet, however in the
leading edge where both ϵ values are large there are large distortions in the VDF, and at the moment of maximum
dynamic pressure there are two prominent cores for theVDFaswas observed also inBlanco‐Cano et al. (2020). The
differences in the electrons are more subtle, and the non‐Maxwellianity measures correspond to VDFs where they
become more elongated in the direction of the magnetic field, e.g. at the local Max ϵe and at the trailing edge.

Altogether, these observations point to a scenario in which, particles are heated at the jet's leading edge and
pushed toward Maxwellian distributions—with ions responding first and electrons following. Within the jet, both
ion and electron VDFs remain highly distorted, indicating persistent deviation from local thermal equilibrium.
Previous studies have shown that the VDFs of jets deviate from Maxwellian at their onset due to the presence of
multiple populations and become more Maxwellian near the dynamic pressure peak. Similar distorsions of VDFs
in relation to magnetosheath jets have been observed by Blanco‐Cano et al. (2020); Raptis et al. (2022); Blanco‐
Cano et al. (2023).

We interpret these results as strong compression at the front edge of the jet, and the velocity shears give rise to a
reconnecting current sheet in this region. In the region behind this current sheet, the plasma is compressed and

Figure 7. Two dimensional slices of ion and electron velocity distribution functions (VDFs) during the jet event. The VDFs are put in the coordinate system where the
magnetic field is in the x axis of the plot, which the velocity is in the x‐y directions. The VDFs are shown for different times of interest which correspond to the dashed
lines in Figure 6. We consider the VDFs Pre and Post jet, as well as when the magnitude of the magnetic field has a maximum and when there are local maxima in the
non‐gyrotropy measure.
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heated, and energy loss from the fields is observed, as well as a gain in energy in the electrons through the
compressive energy channel. The ions seem heated slightly before the electrons, possibly due to their larger scale
lengths in comparison to the electrons. Jets themselves may have several mechanisms where energy is exchanged
with the magnetosheath plasma those that are direct, linked to expansion/compression of the jet and those that are
secondary, e.g. reconnection/outflows. After the dynamic pressure peak, cumulative measures decrease, indi-
cating cooling. We interpret this as the trailing edge expanding, thus performing work on the background. There is
some evidence from numerical simulations that the sizes of jets do evolve (e.g., Palmroth et al., 2018, 2021) in
terms of their size in the x direction from around 0.15 RE to 0.5RE before contracting (e.g., Figure A1 panel a
Palmroth et al., 2021). However, most simulations of jets are two dimensional and the spatial evolution of jets
may not be captured fully. Several studies using three dimensions have been performed by a number of authors
(Fatemi et al., 2024; Guo et al., 2025; Ng et al., 2021; Omelchenko et al., 2021; Ren et al., 2024). These sim-
ulations have highlighted the inadequacy of two dimensional simulations. More complex interconnected jet
behavior (e.g., folding/splitting/merging) has been observed by Fatemi et al. (2024); Ren et al. (2024); Guo
et al. (2025) when a realistic size of the Earth's magnetosphere is also considered. Together this highlights the
need for both three dimensional simulations that also have realistic sizes of the Earth's magnetosphere to capture
the relevant physics. It is not straightforward from spacecraft observations to demonstrate that jets are expanding.
However, the often observed colder temperature and the local measure from the pressure strain terms suggest this.
Detailed comparisons of spacecraft data and simulations with three spatial dimensions may be useful in fully
understanding the spatial evolution of jets.

5. Summary and Discussion
To summarize, we have presented a case study of a magnetosheath jet to understand the associated energy
conversion and exchange with the magnetosheath plasma. The Pressure strain method is unique and has allowed
us to investigate the properties of jets in a completely different and new way. Heating and cooling are pre-
dominantly seen in the compressive energy channels, with transfer through the incompressible channel being very
small in terms of instantaneous values and cumulative sums. This is generally the case for observations in the
magnetosheath (e.g.., Bandyopadhyay et al., 2021). Fluctuations in the J ⋅Eʹ , and pθ are seen to increase at the
leading edge of the jet. The cumulative sums show that at the leading edge, there is a net loss of energy from the
fields, which could convert energy to fluid flow energy. At roughly the same time, there is a net transfer of fluid
energy to the internal energy of electrons and, to a lesser extent, the ions. We propose that this is due to the
velocity shear at the front of the jet, consistent with Eriksson et al. (2016).

Within the jet, the jet is seen to be cooling; several observations of jets have shown that the temperature of jets
tends to be smaller than the surrounding plasma. This cooling could hint that during the evolution of the jet, it
expands. According to the simulations of Omelchenko et al. (2021), the sporadic formation of high speed jets at
foreshock‐shock transitional region are due to the compressed solar wind plasma. In this process turbulence,
kinetic physics of shock reformation, turbulent convection of magnetic field lines are taking place resulting in
plasma filaments of enhanced density. The increasing dynamic pressure anti‐correlates with the ion temperature
and the temperature is lower than the surrounding plasma when the jets are formed. However, this does not
exclude the possibility that the jets continue to expand and cool during their propagation through the mag-
netosheath. The cumulative sums also show that there is heating at the leading edge of the jet with ions being
heated further upstream than the electrons consistent with the characteristic scales of ions being larger than
those of electrons. The non‐Maxwellianity of the VDFs has also been investigated, and the results reinforce
what the pressure strain methodology sees with the ions being affected first and the electrons following. One
conclusion of Graham et al. (2021) is that non‐Maxwellian VDFs are not typically correlated with local
processes. Although the observations of Graham et al. (2021) also suggest higher non‐Maxwellianities in the
turbulent magnetosheath, and jets likely represent one method of injecting energy into the magnetosheath (e.g.,
Krämer, Fatemi, et al., 2025).

Due to the limited number of spacecraft examining jets' evolution in situ is very difficult requiring fortuitous
alignments of multiple spacecraft. One possibility is to investigate numerically simulated data from simulations
with three spatial dimensions so that the evolution can be seen. Virtual spacecraft could also be flown through the
simulation to see how metrics such as the pressure strain terms behave when jets evolve to give complete
information.
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Finally, we remark that these conclusions apply to this particular jet and this behavior may not be typical. This jet
is an example where the increase in dynamic pressure is driven predominantly by the change in velocity rather
than density. Therefore velocity gradients which are calculated in the pressure strain terms may be larger than
density driven jets. The interactions may differ for a jet where the velocity is comparable to the background
magnetosheath bulk speed. A logical next step would be to investigate many jets; this would be possible using the
jet list compiled by Raptis et al. (2020) which covers the years 2015–2020. Although this data set uses pre-
dominantly the fast survey mode, a burst survey mode data flag is included. For the pressure strain method burst
survey mode is preferable as we usually see spikes, a such as those related to magnetic reconnection that have
timescales much shorter than the fast survey mode time resolutions. Another possibility for future investigations
is to investigate three dimensional numerical simulations and virtual spacecraft observations of the pressure strain
terms and then to compare them to the spacecraft data.

Appendix A: The Need to Filter the uz Component of the Electron Velocity
In Table A1 we present the mean and standard deviations values of the ion and electron velocity components, and
their associated errors. The means of the different particle species would be expected to be similar as the global
mean (30 s) is longer than the characteristic timescales. When comparing smaller scales for example, point to
point values we would expect differences as ions begin to demagnetize at the ion inertial length.

All components agree nicely with one another except for the electron Vz component which varies from − 27 to
− 43 km/s between spacecraft. It should be noted that the mean statistical error (Gershman et al., 2017) is
roughly 8 km/s Figure A1 shows the Vz components of the electron velocity. A slight difference in offset can be
seen between the spacecraft which is consistent throughout the interval. A systematic error in the offset will
affect the gradient calculation used when calculating the pressure strain terms. To overcome this limitation we
high‐pass filter the uz at 0.055 Hz to reduce the effect of the offset data before calculating the terms. In
Figure A2 we present the electron pressure strain terms without the high‐pass filtering a,b, while c,d shows
where we have filtered. When looking at the instantaneous values it is not clear that there is much different, but
when we look at the cumulative sums it is clear that a systematic error propagates into the pressure strain terms.
When no filtering is applied the cumulative sum shows a clear increasing trend, which we interpret as being due
to this offset. We note that this will be case dependent. For studies where the point‐wise values of pressure
strain is used in extreme cases (e.g., during magnetic reconnection) the systematic error is likely to be
insignificant. However, when averages are used the effect may be more pronounced. Therefore some caution is
required when using multi‐spacecraft gradient methods, and mean values of all parameters should be checked
beforehand.

Table A1
Mean and Standard Deviations of the Measured Ion and Electron Velocities Maesured by the Four MMS Spacecraft

〈ux〉 ± σux 〈uy〉 ± σuy 〈uz〉 ± σuz 〈uxEr〉 ± σuxEr 〈uyEr〉 ± σuyEr 〈uzEr〉 ± σuzEr

MMS1 I − 279 ± 98 − 140 ± 63 ‐48 ± 58 1.6 ± 0.4 1.9 ± 1.9 1.1 ± 0.3

MMS2 I − 280 ± 99 − 141 ± 64 − 50 ± 56 1.6 ± 0.4 2.0 ± 1.7 1.2 ± 0.3

MMS3 I − 278 ± 99 − 141 ± 64 − 48 ± 57 1.7 ± 0.4 2.0 ± 2.0 1.2 ± 0.2

MMS4 I − 280 ± 100 − 140 ± 64 − 48 ± 57 1.6 ± 0.4 2.2 ± 2.8 1.2 ± 0.3

MMS1 E − 260 ± 107 − 132 ± 88 − 29 ± 72 9.5 ± 1.0 12.4 ± 4.0 7.7 ± 1.8

MMS2 E − 257 ± 101 − 130 ± 81 − 27 ± 67 9.5 ± 0.9 12.2 ± 3.1 7.5 ± 1.4

MMS3 E − 262 ± 106 − 132 ± 90 − 35 ± 69 9.4 ± 0.9 11.9 ± 3.5 7.2 ± 1.7

MMS4 E − 263 ± 105 − 132 ± 85 − 43 ± 69 9.5 ± 0.9 12.0 ± 3.3 7.6 ± 1.3

Note. The mean and standard deviations of the reported statistical error is also given.
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Figure A1. (a) Measured data from the four spacecraft for the uz component of electron velocity. (b) Histogram of the data
with the mean (μ) and standard deviations (σ) the dashed lines denote the mean values.
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