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Earth’s plasma sheet

• Magnetotail reconnection
• Bursty Bulk Flows (BBFs)
• Global Convection Patterns
• Ring current

Modeling PS is useful for:

(a) Understanding storm/substorm dynamics
(b) Explain ring current configuration
(c) Facilitate space weather modeling
(d) Understand inner magnetosphere
(e) Source for radiation belts
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Baseline empirical models

Tsyganenko & Mukai 2003

Dubyagin+ 2016

Why then work on this?
1. More data under different conditions
2. MMS was never used with its state of the art instrumentation
3. These models don’t include time history
4. ML methods can reveal non-linear relationships easily

Modelled with Geotail Modelled with THEMIS
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The dataset (output – Central Plasma Sheet)

Q:1,038,327  (88%) 
R: 118,896  (10%)
M: 24,303  (2%)
Nstorms: 251 

(A)

(B)

Q:230,446  (89%) 
R: 23,859  (9%)
M: 6,020  (2%)
Nstorms: 26

(A)

(D)

(B) (C)

(E) (F)

(A)

(D)

(B) (C)

(E) (F)

(A)Geotail (1994 - 2022)
>1 million points (~12s res)

(B) MMS (2015 – 2024) 
~ 250k points (~12s res)

Output: 
Anything locally measured 

(In this example plasma moments)

Raptis+ 2024 (GRL)
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Data Scientist POV 
(i.e., Input, output & regression)

SW Input tried: Wind (1min res) – OMNIweb (1/5 min res)

Input:
x: Different solar wind features (e.g., n, B, etc.) + 
geomagnetic indices including time history up to 6h
r: Location of SC measuring output

Output
Plasma Sheet

Quantity
Dense Neural Network

Regression

… 𝑦!
x!"
⋮

x#$%"
𝑟&, 𝑟', 𝑟(

Output:
y: Different quantities at plasma sheet 
(e.g., n, B, T etc.)

Results here shown for 1min averaged quantities for output

Input
SW properties + 
Geo conditions
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Statistical Results
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Modeling Density | Predictions vs Observations

TM03 NN Base

R2 0.17 0.68 0.32

MAE 0.19 0.11 0.18

RMSE 0.27 0.2 0.27

r (cor) 0.58 0.83 0.57

• Presented Testing of NN à Prone to data leakage
• Harder test set (i.e., 5 years of out of sample test data) gives R2 ~0.3-0.4

Disclaimer: not exactly same input of original empirical models

Model maximizing correlation for input and output (replace for linear regression)

Geotail data

Results from Last GEM
Key Message: NN > Baseline> TM03

Raptis, O’Brien et al., 2024 (under prep.)
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• PRIME: GRU architecture, non-propagated Wind values tried up to several 
hours of history time

More methodologies & input space

Raptis, O’Brien et al., 2024 (under prep.)

O’Brien et al., 2024

Time History Type of Input Architectures
1-10h Wind (L1) Linear Reg

OMNIweb Gradient 
Boosting

Neural Network

RNN/LSTM/GRU
(PRIME-PS)

Key Takeaway: 
To quantify our method's impact, we tested diverse variations of the problem.

ü Also tried different error functions, optimizers, hyperparameters etc.
ü TODO some different imbalanced techniques
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Updated results (Test set, last 20% of data)

Key Results:

• PRIME-PS demonstrates a performance 
edge (~30% MAE from TM03 and ~15% 
from other ML).

• This advantage can get quite low (from 
cross-validation | not shown).

• Different input, method, time-history, and 
hyperparameter tuning etc. had overall a 
statistically marginal effect.

• Why is this the case?

Raptis, O’Brien et al., 2024 (under prep.)
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Preliminary feature Importance Analysis

Answer: In most cases (statistically): 

Model is predominantly driven by 
spacecraft location

Solar wind input only marginally affects 
performance 

SHAP Values explain why a model made a specific prediction, by showing each feature's impact.

X GSM

Y GSM

More density close to earth and at dawn
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Modeling Efforts
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Modeling Density | 2D Maps

Neural Networks modeling Empirical modeling (TM03) 

N
 [1

/c
c]

N
 [1

/c
c]

Raptis, O’Brien et al., 2024 (under prep.)

Asymmetries introduced
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Modeling Temperature Ratios with MMS | 2D Maps

Neural Networks modeling Empirical modeling (TM03/DSGR16) 

+No extreme values
+Asymmetries are shown

+ Coherent physical picture

Reproducing: Wang et al., 2009 with dusk Ti/Te much higher than dawn
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Storm Time Behavior and Importance of Outliers

The Problem: We use static thresholds for dynamic environents.

The Risk: Therefore we can mistakenly remove the crucial "stormtime plasmasheet.”

The "Solution": Manually find the missing data and add it to the dataset.

Strict CPS (e.g., Ohtani et al., 2008 Raptis et al., 2024) & Flexible CPS (e.g., Richard et al., 2022)
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Test case of a storm (05 Nov 2023)

MAE (>40% improvement)
ML model: 0.7 [1/cc]

TM03: 1.22 [1/cc]Note: values <1 cm⁻³, are transitions to the lobe/BL (will filter them out).
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Summary & Discussion
Results

✅ Marginal Gains: ML models overall outperform analytical methods and show hidden 
asymmetries.

❌ Mediocre Predictability: We only capture "boring" conditions, not the critical rare events.

🧠 Core Problem: Our training data is biased. Extreme events, which are not captured by 
simple thresholds, must be included, but even then, they are very rare...

Future Work

Understand the output: How can we use these output to understand more about the 
physical processes? 

Simulations to the Rescue (?): Try use simulations to generate extreme event data that in-
situ observations struggle to provide.
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When: 13–17 October 2025

Where: JHU/APL, Laurel, MD 
(primarily in-person)

Remote access: Zoom participation 
available

Format: ~20 minute talks plus short 
Q&A. Emphasis on interaction and 
collaborative problem-solving

Topics: See the LMAG2025 site for 
science themes; topic suggestions 
and ideas welcome

Audience: Heliophysics and 
geospace researchers, data 
scientists and computer scientists 
experts

No registration fee
RSVP today!

Advertisement: LMAG25 (13 – 17 OCT 2025 JHU/APL)
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Extras
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Forecasting DST index 3h in advance

explained_variance:  0.849
median absolute error:  3.758
r2:  0.848
MAE:  5.183
RMSE:  7.472

https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD

https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
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Forecasting DST index (3h) vs baseline model (2h)

Persistance model (2h)
explained_variance:  0.864
median absolute error:  3.0
r2:  0.864
MAE:  4.71
RMSE:  7.076

Predictions (3h)
explained_variance:  0.849
median absolute error:  3.758
r2:  0.848
MAE:  5.183
RMSE:  7.472

https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD

https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD
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ML storm time density modeling
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Model Feature importance storm vs quiet

In other words, the increased upstream density had a greater impact during the storm than the SC location.

X_test_storm X_test_total
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Updated results
Two different tests: (20% last data) – fixed dates 2005-2010 (after TM03 was published)

Key Results:

• PRIME-PS demonstrates a performance edge (~30% MAE from TM03 and ~10% from NN).
• This advantage is relatively low (from cross-validation).
• Different input, method, history, etc. had a marginal effect.
• Why is this the case?
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Next step: 2D modeling

Input:
x: Different solar wind features (e.g., n, B, etc.) + 
geomagnetic indices including time history up to 6h
r: Location of SC measuring output

Output
Plasma Sheet

Quantity
Dense Neural Network

Regression

… 𝑦!
x!"
⋮

x#$%"
𝑟&, 𝑟', 𝑟(

Output:
y: Different quantities at plasma sheet 
(e.g., n, B, T etc.)

grid in x,y
To get 2D maps Output across 2D 

Input
SW properties + 
Geo conditions

SW Input tried: Wind (1min res) – OMNIweb (1/5 min res) Results here shown for 1min averaged quantities for output



Savvas Raptis – ML Plasmasheet Modeling GEM 2024 | 27 Jun 2425

TM03 NN

R2 0.17 0.68

MAE 0.19 0.11

RMSE 0.27 0.2

r (cor) 0.58 0.83

Neural Network Empirical (TM03)(a) (b)
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(a) (b) In-situ Clustering

Feature #1
Fe

at
ur

e 
#2


