

Modeling Earth's Plasma Sheet using Machine Learning

Savvas Raptis¹, Connor O' Brien³, Louis Richard², Slava Merkin¹, Kareem Sorathia¹, Simon Wing¹

- ¹APL/JHU, Laurel, MD, US
- ² Swedish Institute of Space Physics, Uppsala, Sweden
- ³ Center for Space Physics, Boston University, Boston, MA, USA

Supported by John Hopkins University Applied Physics Laboratory independent R&D fund

savvas.raptis@jhuapl.edu https://savvasraptis.github.io

Earth's plasma sheet

- Magnetotail reconnection
- Bursty Bulk Flows (BBFs)
- Global Convection Patterns
- Ring current

Modeling PS is useful for:

- (a) Understanding storm/substorm dynamics
- (b) Explain ring current configuration
- (c) Facilitate space weather modeling
- (d) Understand inner magnetosphere
- (e) Source for radiation belts

Baseline empirical models

Tsyganenko & Mukai 2003

The dataset (output – Central Plasma Sheet)

(A) Geotail (1994 - 2022)

>1 million points (~12s res)

(B) MMS (2015 - 2024)

~ 250k points (~12s res)

Output:

Anything locally measured (In this example plasma moments)

Data Scientist POV (i.e., Input, output & regression)

Input:

x: Different solar wind features (e.g., n, B, etc.) + geomagnetic indices including time history up to 6h r: Location of SC measuring output

Output:

y: Different quantities at plasma sheet (e.g., n, B, T etc.)

SW Input tried: Wind (1min res) – OMNIweb (1/5 min res)

Results here shown for 1min averaged quantities for output

Statistical Results

Modeling Density | Predictions vs Observations

Model maximizing correlation for input and output (replace for linear regression)

	TM03	NN	Base					
R2	0.17	0.68	0.32					
MAE	0.19	0.11	0.18					
RMSE	0.27	0.2	0.27					
r (cor)	0.58	0.83	0.57					
Osatali data								

Geotail data

- Presented Testing of NN → Prone to data leakage
- Harder test set (i.e., 5 years of out of sample test data) gives R2 ~0.3-0.4

More methodologies & input space

 PRIME: GRU architecture, non-propagated Wind values tried up to several hours of history time

Key Takeaway:

To quantify our method's impact, we tested diverse variations of the problem.

TODO some different imbalanced techniques

Updated results (Test set, last 20% of data)

	Strict CPS									
Method	MAE	R^2	r	CRPS						
LightGBM	0.145	0.242	0.631	_						
Neural Net	0.152	0.325	0.603	_						
Linear Reg	0.173	0.265	0.620	_						
PRIME-PS	0.113	0.453	0.707	0.083						
TM03	0.163	0.208	0.570	_						

Key Results:

- PRIME-PS demonstrates a performance edge (~30% MAE from TM03 and ~15% from other ML).
- This advantage can get quite low (from cross-validation | not shown).
- Different input, method, time-history, and hyperparameter tuning etc. had overall a statistically marginal effect.
- Why is this the case?

SHAP Values explain why a model made a specific prediction, by showing each feature's impact.

Modeling Efforts

Modeling Density | 2D Maps

Asymmetries introduced

Neural Networks modeling

Empirical modeling (TM03)

Raptis, O'Brien et al., 2024 (under prep.)

Modeling Temperature Ratios with MMS | 2D Maps

Reproducing: Wang et al., 2009 with dusk Ti/Te much higher than dawn

+No extreme values
+Asymmetries are shown
+ Coherent physical picture

Empirical modeling (TM03/DSGR16)

Criterion	Strict CPS	Flexible CPS	High density
$\beta > 1$	yes	_	
$\beta > 0.5$		yes	_
$\sqrt{B_x^2 + B_y^2} < 2 B_z $	yes	_	_
$\dot{N} < 6$	yes	_	_
N > 6		—	yes
EA1SW0 = EA	yes	yes	yes
$-31 < R_x < -5$	yes	yes	yes
$ R_y < 15$	yes	yes	yes
$ R_z < 10$	yes	yes	_ /
$V_x > -20$	_	_	yes

Table 1. Plasma sheet classification thresholds for the strict CPS, flexible CPS, and high-density subsets. *beta* is the ion plasma beta parameter, density (N) is in 1/cc units, V_x is in km/s, and all the locations $(R_{x,y,z})$ are in Earth radius. The coordinate system for all vectors is the aberrated Geocentric Solar Magnetospheric (GSM) coordinates

Storm Time Behavior and Importance of Outliers

The Problem: We use static thresholds for dynamic environents.

The Risk: Therefore we can mistakenly remove the crucial "stormtime plasmasheet."

The "Solution": Manually find the missing data and add it to the dataset.

Strict CPS (e.g., Ohtani et al., 2008 Raptis et al., 2024) & Flexible CPS (e.g., Richard et al., 2022)

Test case of a storm (05 Nov 2023)

ML model: 0.7 [1/cc]

TM03: 1.22 [1/cc]

Note: values <1 cm⁻³, are transitions to the lobe/BL (will filter them out).

Summary & Discussion

Results

- ✓ Marginal Gains: ML models overall outperform analytical methods and show hidden asymmetries.
- X Mediocre Predictability: We only capture "boring" conditions, not the critical rare events.
- Core Problem: Our training data is biased. Extreme events, which are not captured by simple thresholds, must be included, but even then, they are very rare...

Future Work

Understand the output: How can we use these output to understand more about the physical processes?

Simulations to the Rescue (?): Try use simulations to generate extreme event data that *in-situ* observations struggle to provide.

Advertisement: LMAG25 (13 – 17 OCT 2025 JHU/APL)

Workshop on Machine Learning, Data Mining and Data Assimilation in Geospace (LMAG)

RSVP

When: 13–17 October 2025

Where: JHU/APL, Laurel, MD (primarily in-person)

Remote access: Zoom participation available

Format: ~20 minute talks plus short Q&A. Emphasis on interaction and collaborative problem-solving

Topics: See the LMAG2025 site for science themes; topic suggestions and ideas welcome

Audience: Heliophysics and geospace researchers, data scientists and computer scientists experts

No registration fee RSVP today!

Extras

Forecasting DST index 3h in advance

200

Time [*h*]

150

250

explained_variance: 0.849 median absolute error: 3.758

r2: 0.848 MAE: 5.183 RMSE: 7.472

https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD

20

0

-20

-40

-60

-80

50

100

Dst Index [nT]

350

300

Test Set

Predictions

400

Forecasting DST index (3h) vs baseline model (2h)

Predictions (3h)

explained_variance: 0.849 median absolute error: 3.758

r2: 0.848 MAE: 5.183 RMSE: 7.472

Persistance model (2h)

explained_variance: 0.864 median absolute error: 3.0

r2: 0.864 MAE: 4.71 RMSE: 7.076

https://mybinder.org/v2/gh/SavvasRaptis/machine-learning-examples/HEAD

ML storm time density modeling

Model Feature importance storm vs quiet

In other words, the increased upstream density had a greater impact during the storm than the SC location.

Updated results

Two different tests: (20% last data) – fixed dates 2005-2010 (after TM03 was published)

Table 2. Performance metrics for each method when evaluating plasma density (n_i) in units of [1/cc]

Table 3. Performance metrics for each method when evaluating ion temperature (T_i) in units of [KeV]

		Tes	ting: Las	st 20% of	data							Last 20	% of data	l			
		Strict	CPS		Flexible				Strict CPS				Flexible				
Method	MAE	R^2	r	CRPS	MAE	R^2	\mathbf{r}	CRPS	Method	MAE	R^2	r	CRPS	MAE	R^2	r	CRPS
LightGBM	0.145	0.242	0.631	_	0.330	0.002	0.072	_	$\overline{ ext{LightGBM}}$	1.49	0.113	0.667	_	1.51	0.166	0.670	_
Neural Net	0.152	0.325	0.603	_	0.353	0.000	0.055	_	Neural Net	XXX	XXX	XXX	_	XXX	XXX	XXX	_
Linear Reg	0.173	0.265	0.620	_	0.367	0.001	0.066	_	Linear Reg	1.26	0.344	0.609	_	1.29	0.377	0.635	_
PRIME-PS	0.113	0.453	0.707	0.083	0.307	0.02	0.086	0.278	PRIME-PS	1.223	0.383	0.699	0.859	1.098	0.519	0.746	0.779
TM03	0.163	0.208	0.570	_	0.339	0.000	0.055	_	TM03	4.08	-3.906	0.545	_	3.55	-2.766	0.587	_
Testing: Fixed dates 2005–2010				Fixed dates 2005–2010													
	Strict CPS Flexible						Strict CPS Flexible				ible						
Method	MAE	R^2	r	CRPS	MAE	R^2	r	CRPS	Method	MAE	R^2	r	CRPS	MAE	R^2	r	CRPS
LightGBM	0.158	0.201	0.587	_	0.185	0.032	0.176	_	$ ule{-}$ LightGBM	1.65	0.054	0.692	_	1.65	0.111	0.685	
Neural Net	0.169	0.175	0.518	_	0.175	0.115	0.374	_	Neural Net	XXX	XXX	XXX	_	XXX	XXX	XXX	_
Linear Reg	0.197	0.162	0.543	_	0.256	-0.051	0.318	_	Linear Reg	1.36	0.380	0.619	_	1.35	0.425	0.655	_
PRIME-PS	0.146	0.286	0.658	0.106	0.142	0.117	0.454	0.106	PRIME-PS	1.258	0.442	0.682	0.9054	1.246	0.486	0.709	0.893
TM03	0.160	0.234	0.523	_	0.167	0.159	0.425	_	TM03	4.27	-3.409	0.555	_	3.78	-2.535	0.601	_

Key Results:

- PRIME-PS demonstrates a performance edge (~30% MAE from TM03 and ~10% from NN).
- This advantage is relatively low (from cross-validation).
- · Different input, method, history, etc. had a marginal effect.
- Why is this the case?

Next step: 2D modeling

Input:

x: Different solar wind features (e.g., n, B, etc.) + geomagnetic indices including time history up to 6h r: Location of SC measuring output

SW Input tried: Wind (1min res) – OMNIweb (1/5 min res)

Output:

y: Different quantities at plasma sheet (e.g., n, B, T etc.)

Results here shown for 1min averaged quantities for output

