

Storm-Time Plasma Sheet Convection: Global Patterns and the Dynamics of Mesoscale Bursty Flows

Tuesday 02 September 2025

S. Raptis¹, A. Devanandan², V. Merkin¹, S. Ohtani¹, M. Gkioulidou¹, A. Keesee²

¹JHU/APL

²University of New Hampshire

Outline

- Introduction
- Global Convection Patterns Magnetic Flux (*)
- Bursty Interval Contribution (2 Ongoing "soon" to be submitted works)
- Summary

General Context & Motivation

One of CGS objectives:

The role of **mesoscale plasma sheet** transport in the **ring current** build-up

➤ To tackle this we need to establish a clear understanding of the overall plasmasheet transport during quiet and storm times.

This work:

- Focus on magnetic flux transport during storms
- Building towards a holistic multi-spacecraft evaluation including mass and energy transport

50% of total energy flux transported into the inner magnetosphere by mesoscale structures

Sciola+2023

Dawnside Current Wedge & Asymmetries in Magnetopause Reconnection

Ohtani+ 2021 Sorathia+ 2023

Storm phases classification

2003 Halloween Storm

Verified with methodology of Ohtani 2021

https://zenodo.org/records/15127938

Plasmasheet Coverage per mission

Criteria to find CSP

- 1. $[Y_{GSM,4^{\circ}}] < 10$
- 2. $-5 < X_{GSM,4^{\circ}} < -30$
- 3. $\beta = \frac{P_{\text{the}}}{P_{\text{mag}}} > 1$
- 4. $|Bz| > 2\sqrt{Bx^2 + By^2}$

See e.g., Ohtani+ 2008, Guild+ 2008, Roziers+ 2009, Vo+ 2023

Geotail > 1 million points ~250 storms **MMS** ~ 250k points ~25 storms

Findings:

- 1. MMS have limited observations during storm times (especially main phase)
- 2. Main phase contains data from about 6 storms for **MMS**
- 3. Slightly more dawnside data during main phase for **Geotail**

Plasma Sheet Convection - Geotail

Plasma Sheet Convection – MMS

Storm - Main Phase Difference (Geotail | 1994 - 2022)

Dawn sector: storm-time magnetic flux transport linked to faster plasma flows

Dusk sector: storm-time magnetic flux transport linked to stronger dipolar magnetic fields

What do we know so far?

Plasma sheet storm time:

- 1. Elevated Ey associated with increased Bz, and limited enhancement of V1x
- 2. Dusk observations showing more dipolar magnetic field (Bz))
- 3. Dawn are associated to relatively faster flow (V1x)

Let's move to Bursty Intervals

What is a bursty interval ? (BBFs, BEIs, etc.)

Scholer+ 1984, Baumjohan+ 1990, Angelopoulos+ 1991

BBFs:

- Fast ion flows (v >400 km/s),
- 10-100s in duration
- ~ 4 Re size
- Associated with a Dipolarization front (DF)

BEIs = Bursty Electric field Intervals.

Bursy Intervals – definition and issues

- (1) What are the thresholds and in which quantity?
- (2) Are these thresholds physical or ad hoc?
- (3) Are there observational biases?
- (4) What are instrumentation limitations?
- (5) Do we combine nearby measurements?

++++

Here, we used:

- > No combination of nearby intervals
- PS classified with 2 set of criteria*
- Geotail with total ion plasma instrument moments
- ➤ Ey ~ (-VxB)y

BBFs | BEIs:

1 point :
$$v_{\perp,x} > 250 \frac{km}{s} | E_y > 2 \frac{mV}{m}$$

Interval: $v_{\perp,x} > 100 \frac{\text{km}}{\text{s}} \mid E_y > 1 \frac{\text{mV}}{\text{m}}$

*Strict: |Y| <10 [Re] | β >1 | |Bz| $\,> 2\sqrt{Bx^2+By^2}$ | n<3 [1/cc])

Flexible: |Y| < 15 [Re] $|\beta| > 0.5$ |n| < 5 [1/cc])

Earthward Bursty Magnetic Flux Transport

BBF Properties during Geomagnetic storms

Key Results:

- Storm-time BBFs transport more magnetic flux than non-storm BBFs.
- 2. This is linked to a **stronger background Bz**, while BBF velocity stays about the same.
- 3. In both storm and non-storm cases, the flux enhancement comes mainly from the elevated BBF velocity.

Devanandan et al., 2025 (ongoing)

Summary and Next Steps

1. Stormtime Global Convection (published):

- Plasma sheet Ey is elevated due to increased Bz, with limited enhancement of V_{1x}
- 2. Bz enhancement is more prominent at Dusk
- 3. V_{Ix} is more elevated at Dawn
- 2. Plasma sheet bursty Intervals (Ongoing):
 - 1. BBFs can contribute ~25% of earthward magnetic flux during quiet and ~40% during main phase. This is linked to a stronger background Bz, while BBF velocity stays about the same.
 - 2. For storm and non-storm cases, flux enhancement comes mainly from the elevated BBF velocity.

Future plans:

- Evaluate mass and energy flux transport
- Create similar datasets and evaluate THEMIS
- Evaluate MHD scales with MMS string-ofpearl campaign against MAGE simulations

Dawn – Dusk Asymmetry of BBFs/BEIs

Bursty Interval Occurrence: ~2-4% quiet times | ~4-8% main phase

Same message: Across all combinations = Dawn preference during main phase and Dusk during quiet

Error bars = min/max based on definition of bursty interval Different sets = Different definition of dawn/dusk

Statistics Caveat for bursty flows – Geotail (1994 – 2022)

Magnetotail Reconnection Asymmetry

Nagai+2023 Geotail data

The problem of saying Mesoscale structure transfer everything

Definition of bursty mesoscale structures → tail

Case A: $1 \sim 2 \rightarrow 3$ is doing all the work

Case B: $1 \sim 3 \rightarrow 2$ is doing all the work

Both are equally valid in a statistical sense

Also, case A is mathematically speaking obvious.

Can we use VxBy as a proxy of Ey?

Yes

No

Reminder: Bursty Intervals Dominate the Tail

By definition:

Core is dominated by global convection (slow flow)

Tail is dominated by BBFs (fast flow)

The question is then mathematically speaking:

How strong the tail of a distribution is during different geomagnetic conditions?

The problem is:

The tail is not well defined physically. Future: Treat the problem purely mathematically

How fat is the tail?

Spatial distribution - Ey

Spatial distribution - V⊥x

Spatial distribution - Bz

CGS CENTER FOR GEOSPACE STORMS