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Abstract: We use Magnetospheric Multiscale (MMS) data to study electron kinetic entropy per particle
Se across Earth’s quasi-perpendicular bow shock. We have selected 22 shock crossings covering a
wide range of shock conditions. Measured distribution functions are calibrated and corrected for
spacecraft potential, secondary electron contamination, lack of measurements at the lowest energies
and electron density measurements based on plasma frequency measurements. All crossings display
an increase in electron kinetic entropy across the shock ∆Se being positive or zero within their error
margin. There is a strong dependence of ∆Se on the change in electron temperature, ∆Te, and the
upstream electron plasma beta, βe. Shocks with large ∆Te have large ∆Se. Shocks with smaller βe are
associated with larger ∆Se. We use the values of ∆Se, ∆Te and density change ∆ne to determine the
effective adiabatic index of electrons for each shock crossing. The average effective adiabatic index is
〈γe〉 = 1.64± 0.07.

Keywords: space plasma; electron kinetic entropy; quasi-perpendicular shock; adiabatic index

1. Introduction

Collisionless shock waves are ubiquitous throughout our universe. There are many
open questions about the physical mechanisms behind electron heating [1–3] and entropy
generation [4] at collisionless shocks. In the absence of collisions, dissipation of the solar
wind bulk flow energy must be sustained via other processes. The physics behind dissipa-
tive processes and entropy generation in collisionless plasmas is an ongoing research topic
and numerous studies have been performed observationally, experimentally, theoretically
and numerically [5–8].

The generation of entropy is linked to irreversible dissipation in closed thermodynamic
systems [9,10]. However, the utilization of entropy in open thermodynamic systems is
currently under debate [6]. For example, Liang et al. [5] use local kinetic entropy density as
a diagnostic tool to indicate the dissipation regions in magnetic reconnection events, as seen
in numerical simulations. Another study uses the Cluster spacecraft ion and electron data to
measure the entropy development across Earth’s quasi-perpendicular bow shock [4]. Both
magnetic reconnection events and bow shock crossings are not closed systems. However,
the concept of entropy has been successfully used to study the irreversible processes within
those systems.

The kinetic entropy is calculated directly from the distribution function f according to,

s = −kB

∫
f ln f d3v. (1)

A detailed derivation of Equation (1) can be found in Liang et al. [5]. We normal-
ize Equation (1) with the number density n =

∫
f d3v such that we obtain the entropy

per particle
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S =
s
n
= −

kB
∫

f ln f d3v∫
f d3v

. (2)

In the rest of this paper, when referring to “entropy”, we mean S, i.e., entropy per
particle.

In the case of the bow shock, theoretical calculations show that entropy generation
is localized to the shock transition layer and related to the turbulence collision term,
i.e., entropy being generated by wave–particle interactions [11]. There have been few
experimental studies of such an entropy development. This is primarily because they
require very accurate distribution function calibrations. The Magnetospheric Multiscale
(MMS) spacecraft, with its high-resolution particle instrumentation, allows addressing this
important topic [12]. Of particular importance is to study how electron kinetic entropy
relates to the shock parameters, such as Alfvénic Mach number MA, plasma beta βe, shock
angle θBn and change in density ∆ne and temperature ∆Te. Earlier studies have shown
that there are two critical Whistler Mach numbers, discussed in Krasnoselskikh et al. [13]
and Lalti et al. [14]. The Whistler Mach numbers depend on the shock normal angle, θBn,
and upstream electron plasma beta, βe. For Alfvén Mach numbers above these critical
values, Whistler waves are not able to form standing wave trains upstream of the shock [15].
Whistler waves can scatter electrons via the cyclotron resonance [16] and could possibly
contribute to entropy generation; thus, it is of importance to understand if these two
different critical Mach numbers affect the electron entropy development across the shock.

In this study, we use the MMS data to investigate the change in electron kinetic entropy
across quasi-perpendicular shocks with different shock parameters, including shocks above
and below the critical Whistler Mach numbers. All shocks investigated are supercritical
shocks, meaning all have Alfvén Mach numbers above the critical value of 2.76. Above
this critical value, anomalous resistivity can no longer dissipate all the incoming bulk
flow energy, and the shock starts to reflect incoming ions [17]. In addition, we provide
a simplified theoretical estimate (Appendix A) of the change in total entropy per particle
across a collisionless shock and its dependence on the upstream Alfvénic Mach number,
MA, shock angle, θBn, and total plasma beta, β.

2. Method
2.1. Data

We used data from 22 shock crossings observed by the MMS spacecraft. All the
selected events are during time periods when burst data are available. The shock crossings
were chosen to have a wide range of different shock conditions. Some of the crossings were
selected from the databases used in Raptis et al. [18] and Lalti et al. [14]. Magnetic field
data were taken from the fluxgate magnetometer (FGM) with a resolution of 7.8 ms [19]. All
plasma moments and the measured 3D distribution functions were obtained from the fast
plasma investigation (FPI) measuring at a cadence of 30 ms [20]. The electric field spectra
and spacecraft potential were obtained from the spin plane double probe (SDP) [21] and
the axial double probe (ADP) [22] instruments. The solar wind ion temperature was not
measured accurately by MMS; therefore, it was obtained from the 1-min resolution OMNI
database [23].

2.2. Shock Parameter Calculations
2.2.1. Shock Normal

The shock normal direction was determined using upstream and downstream measure-
ments of the magnetic field and ion velocity at MMS1. The normal vector was calculated
using four different methods: the velocity coplanarity method and three mixed methods [24].
The sign of the normal vector is taken such that the normal points upstream from the shock.
The shock normals listed in Table 1 are calculated using the average of the three mixed
methods. However, one crossing exhibited an inconsistency between the observations and
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calculated θBn for all methods except the velocity coplanarity method. Hence, the velocity
coplanarity method was used for this crossing.

Table 1. The studied shock crossings along with upstream parameters and calculated shock normal
vectors. The upstream parameters were obtained taking 6-s averages. The shock normals are obtained
as the average of the three mixed methods described in Paschmann and Daly [24] except for crossing
10, where the velocity coplanarity method was used.

Crossing BSW (nT) VSW (km/s) ne,SW (cm−3) Te,SW (eV) n̂ (GSE)

1. 2016-11-10 17:10 12.4 379 24.1 19.2 0.88 0.44 0.18

2. 2016-11-10 16:59 7.0 373 43.8 17.3 0.81 0.58 0.07

3. 2016-12-06 10:55 8.0 343 24.8 11.6 0.97 0.24 0.02

4. 2016-12-09 10:29 7.9 617 6.9 13.0 0.99 0.15 −0.06

5. 2016-12-18 07:36 6.2 439 11.3 21.0 0.99 −0.09 0.03

6. 2017-01-01 09:11 3.9 486 9.2 16.5 0.99 −0.13 0.07

7. 2017-01-15 06:43 5.0 324 19.1 10.4 0.88 0.26 0.39

8. 2017-01-18 05:39 17.1 374 21.7 17.8 0.95 −0.32 0.003

9. 2017-01-31 10:07 9.1 645 11.0 16.4 0.94 −0.24 0.24

10. 2017-10-18 04:34 3.3 404 4.7 15.8 0.80 0.55 0.25

11. 2017-11-02 04:27 9.9 317 17.0 13.2 0.73 0.66 0.15

12. 2017-11-24 23:20 9.1 396 7.3 12.0 0.86 0.48 0.20

13. 2017-11-28 18:01 5.2 405 11.3 11.8 0.99 0.03 0.05

14. 2017-12-26 22:10 3.2 460 7.1 14.9 0.94 −0.07 0.33

15. 2018-01-24 04:05 2.4 369 5.9 9.8 0.92 −0.35 0.16

16. 2018-11-16 00:11 4.3 361 7.5 9.5 0.80 0.57 0.18

17. 2018-11-18 17:47 5.6 310 17.6 7.5 0.84 0.43 0.32

18. 2018-11-27 04:18 3.4 299 16.3 11.7 0.95 0.22 0.24

19. 2018-12-16 20:16 4.0 325 11.5 12.4 0.96 0.14 0.25

20. 2018-12-25 07:56 4.6 325 9.9 12.3 0.98 0.16 0.11

21. 2019-12-17 21:44 3.5 327 9.6 12.0 0.89 0.15 0.42

22. 2020-04-17 18:19 3.4 297 8.8 8.2 0.63 −0.78 −0.04

2.2.2. Upstream Shock Parameters

We characterize the shock by the following upstream parameters: the plasma beta β,
the shock normal angle θBn, the Alfvén Mach number MA, the fast magnetosonic Mach
number Mms, the linear whistler Mach number Mwh, and the non-linear whistler Mach
number Mwhn. Below we describe each of these parameters.

The plasma beta is the ratio between the particle pressure and the magnetic pressure

β j =
njkBTj

B2/2µ0
(3)

where j indexes each plasma species. The shock normal angle θBn is the angle between the
upstream magnetic field Bu and the shock normal n̂,

θBn = arccos
(

Bu · n̂
|Bu|

)
. (4)

Using Equation (4), we obtain three θBn values from the three different shock normals
obtained via the three mixed methods. The θBn values given in Table 2 are the average of
these three values.
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Table 2. The studied shock crossings along with the calculated fast magnetosonic Mach number,
Mms, Alfvénic Mach number, MA, upstream electron plasma beta, βe, shock angle, θBn, change in
density, ∆n/nSW, change in temperature, ∆Te/Te,SW, change in electron kinetic entropy per particle,
∆Se and adiabatic index, γe.

# Mms MA βe θBn ∆n/nSW ∆Te/Te,SW ∆Se/kB γe

1 6.0 7.1 1.2 63 2.5 ± 0.1 2.2 ± 0.1 0.59 ± 0.05 1.64 ± 0.03

2 4.9 13.6 6.2 89 2.1 ± 0.4 1.0 ± 0.2 −0.06 ± 0.06 1.65 ± 0.11

3 5.2 7.9 1.8 79 2.4 ± 0.5 2.2 ± 0.3 0.51 ± 0.13 1.68 ± 0.09

4 6.0 9.9 0.6 85 2.9 ± 0.4 5.3 ± 0.5 1.44 ± 0.09 1.66 ± 0.04

5 5.4 10.9 2.5 61 2.4 ± 0.2 1.8 ± 0.1 0.39 ± 0.04 1.63 ± 0.04

6 5.1 14.7 4.0 64 2.0 ± 0.4 1.4 ± 0.1 0.31 ± 0.12 1.62 ± 0.09

7 5.2 10.5 3.3 89 2.0 ± 0.2 1.3 ± 0.1 0.10 ± 0.08 1.68 ± 0.09

8 4.2 4.8 0.5 59 1.9 ± 0.5 2.5 ± 0.2 0.75 ± 0.07 1.70 ± 0.05

9 5.4 10.8 0.9 77 2.5 ± 0.2 4.4 ± 0.5 1.27 ± 0.09 1.67 ± 0.06

10 4.2 7.1 2.8 59 2.6 ± 0.3 1.2 ± 0.1 0.10 ± 0.06 1.56 ± 0.06

11 3.2 4.4 0.9 64 1.7 ± 0.2 1.6 ± 0.1 0.27 ± 0.04 1.76 ± 0.05

12 4.0 4.6 0.4 84 2.1 ± 0.3 3.6 ± 0.3 1.30 ± 0.07 1.63 ± 0.04

13 7.5 11.3 2.0 75 3.4 ± 0.2 3.0 ± 0.1 0.71 ± 0.04 1.64 ± 0.02

14 6.1 15.5 4.1 84 2.3 ± 0.4 1.8 ± 0.3 0.62 ± 0.18 1.57 ± 0.09

15 8.8 18.2 4.1 79 3.1 ± 0.2 2.0 ± 0.2 0.50 ± 0.06 1.58 ± 0.04

16 5.1 8.2 1.5 83 2.4 ± 0.2 2.8 ± 0.2 0.90 ± 0.06 1.63 ± 0.04

17 4.9 7.8 1.7 70 2.8 ± 0.3 2.1 ± 0.2 0.12 ± 0.04 1.79 ± 0.06

18 5.1 13.7 6.7 67 2.7 ± 0.2 0.83 ± 0.1 −0.06 ± 0.09 1.49 ± 0.05

19 6.1 11.3 3.6 72 2.3 ± 0.5 1.3 ± 0.2 0.32 ± 0.09 1.55 ± 0.08

20 5.8 10.3 2.3 87 2.5 ± 0.2 2.5 ± 0.2 0.72 ± 0.04 1.64 ± 0.03

21 5.3 11.7 3.8 52 2.6 ± 0.2 1.4 ± 0.1 0.11 ± 0.03 1.63 ± 0.04

22 5.6 10.2 2.5 65 2.7 ± 0.4 2.1 ± 0.2 0.41 ± 0.09 1.65 ± 0.07

In the theory of collisionless shocks, there are different Mach numbers governing
the physics. The Alfvén Mach number MA is the ratio of the normal component of the
upstream flow velocity relative to the shock to the upstream Alfvén speed, VA. The fast
magnetosonic Mach number Mms is calculated from the Alfvén Mach number, total plasma
beta and shock angle according to

M2
ms =

2M2
A

1 + 5β/6 + [(1− 5β/6)2 + (10β/3) sin2 θBn]1/2
, (5)

where β = βe + βi is the upstream total plasma beta. In this study, we also consider two
critical whistler Mach numbers. The linear whistler Mach number Mwh, defined as the
ratio of maximum whistler phase speed and the normal component of the upstream flow
velocity relative to the shock, can be expressed as by Oka et al. [15],

Mwh =
1
2

√
mi

me
| cos θBn|, (6)

which depends only on the shock normal angle. For MA > Mwh, the whistler wave phase
velocity cannot be directed upstream away from the shock and thus allow the formation of
standing wave fronts in front of quasi-perpendicular shocks. A similar expression for the
linear whistler Mach number can be defined with respect to the group velocity instead, see,
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e.g., Oka et al. [15]. Krasnoselskikh et al. [13] also introduce a non-linear whistler Mach
number (Mwhn), satisfying the equation

M2
whn(2M2

wh −M2
whn)

3 = βe(2M2
whn −M2

wh)
3, (7)

that allows finding Mwhn numerically. Unlike the linear whistler Mach number in (6), the
non-linear whistler Mach number not only depends on the shock angle but also has a
weak dependence on the electron plasma beta, βe. For MA > Mwhn, non-linear whistler
wave trains are not able to form standing wave fronts upstream of the quasi-perpendicular
shock [13].

Calculating the Mach numbers associated with a shock wave, the normal component
of the upstream flow velocity relative to the shock needs to be known. It is calculated from
the measured solar wind velocity VSW (see Table 1), shock normal, and the shock velocity.
The shock velocity is determined using two methods: the mass flux method and the Smith and
Burton method [24]. The shock velocity in our calculations is taken as the average between
the two methods. However, if one of the methods yields an unphysical velocity, such as the
shock velocity having a sign inconsistent with observations, then the shock velocity from
the other method is used. All the calculated Mach numbers are given in Tables 2 and 3.

Table 3. The studied shock crossings with Alfvénic to linear and non-linear whistler Mach number
ratios, maximum electric field strength measured across the shock and electron kinetic entropy
change.

# MA/Mwh MA/Mwhn |E|max (mV/m) ∆Se/kB

1 0.74 0.56 739 0.59 ± 0.05

2 1.2 1.01 224 −0.06 ± 0.06

3 1.9 1.6 178 0.51 ± 0.13

4 44 29 121 1.44 ± 0.09

5 1.05 0.85 271 0.39 ± 0.04

6 1.5 1.2 121 0.31 ± 0.12

7 28 34 130 0.10 ± 0.08

8 0.44 0.34 716 0.75 ± 0.07

9 2.2 2.3 192 1.27 ± 0.09

10 0.42 0.33 117 0.10 ± 0.06

11 0.47 0.37 143 0.27 ± 0.04

12 2.0 2.7 482 1.30 ± 0.07

13 2.1 1.8 294 0.71 ± 0.04

14 7.2 7.2 82 0.62 ± 0.18

15 4.4 4.1 261 0.50 ± 0.06

16 3.4 2.6 203 0.90 ± 0.06

17 1.06 0.82 293 0.12 ± 0.04

18 1.6 1.4 194 −0.06 ± 0.09

19 1.7 1.5 441 0.32 ± 0.09

20 8.6 8.8 302 0.72 ± 0.04

21 0.88 0.72 171 0.11 ± 0.03

22 1.12 0.93 231 0.41 ± 0.09
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2.3. Electron Distribution Function Corrections

To make reliable estimates of the electron entropy and electron moments, the electron
distribution functions from the MMS data archive have to be additionally calibrated. Four
corrections are performed, all of them described below.

2.3.1. Spacecraft Potential

The spacecraft has a potential Φ with respect to the ambient plasma environment.
Hence, a charged particle with energy E will be measured by MMS at a shifted energy

E′ = E− qΦ,

where q is the charge of the particle. Normally, MMS spacecraft are positively charged,
and therefore, electrons are accelerated by the spacecraft and measured at higher energies,
while (positively charged) ions are decelerated and measured at lower energies. We correct
the measured distribution functions of ions and electrons by using the spacecraft potential
estimates from the electric field instrument. This is the only correction performed on the
ion distribution functions measured by MMS.

2.3.2. Secondary Electrons

Secondary electron emissions contaminate the lower energy channels of the electron
distribution functions measured by MMS [25]. This contamination is illustrated in Figure 1a,
which shows the electron distribution function average over all angles. The effect of the
secondary electrons can be seen at the lower energies, E < 20 eV, as a significant increase in
the distribution function. The secondary electron number density increases with increasing
background plasma density. This is attributed to secondary electron emissions due to
background plasma electrons hitting the spacecraft and instrument surfaces.
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Figure 1. The correction of secondary electron contamination at the low energies. (a) Measured
distribution function fMMS, averaged over a full solid angle, (b) corrected distribution function fcorr,
(c) electron number density. The times of distribution functions are indicated by the colored vertical
lines in panel (c). The different colors correspond to different times crossing the shock.
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In order to resolve the distribution function of the ambient background plasma, the
low-energy secondary electron population needs to be removed. This is achieved by
modeling the secondary electron population as consisting of two components,

fsec = fsec,ph + fsec,iso, (8)

one sun angle-dependent population due to photoelectrons ( fsec,ph) and one isotropic pop-
ulation of secondary electron emission created by the impact of plasma electrons ( fsec,iso).
The sun angle-dependent component is independent of the background ambient plasma
density and is set according to Gershman et al. [25], corresponding to an efficient photoelec-
tron density of nsec,ph = 0.35 cm−3. The isotropic component is set to model the secondary
electron population dependence on the ambient background plasma density. This model
requires knowledge about the efficient number density of secondaries. This number density
is estimated using combinations of the values at the two lowest energy channels. We
define the partial density n(Ei) to be the number density of electrons corresponding to the
distribution function of secondaries with energies between Ei − ∆Ei and Ei + ∆Ei, where i
is the index of each energy bin of the electron instrument and ∆Ei is the corresponding half
of the energy bin size. Figure 2 shows partial densities, n(Ei), at four different locations
during a shock transition. The secondary electron model distribution function is then
subtracted from the one measured by MMS according to

fcorr = fMMS − fsec. (9)

The secondary electron distribution function, fsec, is adjusted so that fcorr resembles a
Maxwellian-like shape at the low energies in the solar wind. In the magnetosheath, fsec
is adjusted to yield fcorr as a flat-top distribution. Panels (a) and (b) of Figure 1 show the
measured distribution functions, fMMS, and the corrected distribution functions, fcorr, at
five different shock crossing locations indicated in panel (c).

For electron distribution functions in the shock transition layer (STL), secondary elec-
tron density is estimated by performing a gradual linear transition between the secondary
densities used in the solar wind and in the magnetosheath.

2.3.3. Extrapolation to Zero Energy

The part of the distribution functions ranging from the lowest measured energy
bin value down to zero energy, while not measured by the spacecraft, gives an important
contribution to the entropy estimates. Therefore, it is important to use good approximations
for the distribution function values in that interval. We assume that in the low energy
range, the distribution of electrons is isotropic, and any angular dependence is assumed
negligible. This is a good approximation as the electron drift velocity is small compared to
their thermal velocity. Based on these assumptions, we extrapolate the lowest value of (the
solid angle averaged) distribution functions down to zero. This extrapolation is illustrated
in Figure 3 as a dashed line. The entropy calculation of this extrapolated part is shown
below in Section 2.4.
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Figure 2. The correction of secondary electron contamination as seen in partial densities for MMS1.
(a–d) Partial densities at four different locations crossing the shock. The black lines are calculated
using the measured fMMS and the colored lines are calculated using the corrected fcorr. (e) The
electron density. The colored vertical lines indicate the time instants of fMMS measurements. The
different colors correspond to different times crossing the shock. The number density of secondary
electrons is estimated using combinations at the values of the two lowest energy channels.
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Figure 3. Distribution functions in upstream solar wind (blue) and downstream magnetosheath (red).
The horizontal dashed lines indicate the extrapolated part of the distribution functions, while the
vertical dashed-dotted lines indicate the thermal energies of the entire distribution functions.

2.3.4. Density and Temperature

As a final step, the corrected distribution functions are scaled by a scalar factor η such
that they correspond to the same density as obtained based on the measurements of plasma
frequency by the electric field instrument upstream and ion density downstream. As an
example, Figure 4 shows the electric field spectrogram for one shock crossing. The plasma
frequency peak is seen in the upstream solar wind at roughly 30 kHz, corresponding to a
plasma density of about 11.3 cm−3. We verify the plasma frequency peak by comparing
the derived density with the measured one. Furthermore, the plasma frequency is much
higher than the gyrofrequency (around 200 Hz). Therefore, the upper hybrid frequency
is approximately equal to the plasma frequency. In this case, all the corrections from
Sections 2.3.1–2.3.3 provide a distribution function corresponding to a density of about
9.44 cm−3, and thus, the scaling factor is η = 11.3/9.44 = 1.2. We use this scaling factor for
all distribution functions in the upstream solar wind, including up to the beginning of the
shock ramp. Figure 5a displays the measured electron and ion densities as supplied by the
MMS data center and the corrected density (red line) that we use in our study.

Figure 5b shows the electron temperature values as supplied by the MMS data center
(blue) and obtained from our corrected distribution function (red). The slight differences
between the values in the magnetosheath are most probably due to different handling of
secondary electrons, and in our study, we use temperature values that we obtain from the
corrected distribution functions.
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Figure 4. Electric field spectrogram for one shock crossing. The plasma frequency emission at
f ≈ 30.1 kHz corresponds to a density of about 11.3 cm−3.

Figure 5. Density and temperature across the shock. (a) Density as obtained by the ion instrument
(black), electron instrument (blue) and density obtained from the corrected distribution function
using plasma frequency correction (red). (b) Electron temperature as given from the data center (blue)
and calculated using the corrected distribution function (red).

2.4. Electron Entropy Calculation

The measured electron entropy density is calculated as
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s = −kB

∫
f ln ( f )d3v = s0 − kB ∑

i,j,k
fijk ln ( fijk)∆vijk (10)

where fijk is the corrected distribution function measured by the electron instrument at a
specific energy channel Ei having velocity space volume ∆vijk defined by the energy bin
size ∆Ei and spherical angular bin sizes ∆θj and ∆ϕk,

∆vijk ∝
√
(Ei − eΦ)∆Ei sin θj∆θj∆ϕk, (11)

and s0 is the entropy calculated from the extrapolated part of the distribution function
(illustrated by the horizontal dashed lines in Figure 3). We are assuming that the distribution
function is constant at these energies, and therefore, s0 is obtained as

s0 = −kB

2π∫
0

π∫
0

E0∫
0

f ln f d3v = −kB f0 ln f0
8πE3/2

0
3

(12)

where E0 denotes the lower edge of the lowest electron energy bin value (5.51 eV−Φ), and
f0 is the value of the distribution function used to extrapolate down to zero energy. Finally,
the entropy per particle is calculated according to Equation (2).

3. Results

Figure 6 displays one example shock event, henceforth referred to as crossing 5,
illustrating the analysis performed on each shock crossing. The magnetic field data in
Figure 6a shows the characteristic signs of a quasi-perpendicular shock crossing. At the start
of the interval, the spacecraft are upstream of the shock with an average solar wind speed
of about 439 km/s, see Figure 6b. Around 07:35:27 UTC, the ion velocity starts to decrease
and the spacecraft enters the foot region of the shock. The ion spectrogram in Figure 6c
shows an almost monoenergetic signal at about 1 keV energy in the upstream region that
corresponds to the cold solar wind beam. There is a high energy ion population with
energy up to 10 keV, associated with the shock, present already at 07:35:21 UTC. Hence, the
solar wind upstream parameters are taken as averaged values before this time. At around
07:35:36 UTC, the MMS1 spacecraft measures a sharp increase in density and temperature,
see Figure 6e,f. This increase coincides with a sharp transition in the ion (Figure 6c) and
electron (Figure 6d) differential energy flux and is interpreted as the shock ramp. The
sharp peak seen in the magnetic field, density and temperature at around 07:35:38 UTC
is identified as the overshoot, which is followed by the downstream magnetosheath. The
calculated entropy of electrons and ions (panels (g) and (h)) is observed to increase across
the shock. We define upstream and downstream parameters by taking 6-s averages, 07:35:15–
07:35:21 UTC upstream and 07:35:54–07:36:00 UTC downstream. The Alfvén Mach number
of this shock is MA ≈ 10.9 and the shock angle is θBn ≈ 61◦. The change in electron entropy
across the shock is 0.39kB, and the change in ion entropy is 2.9kB. All the other shocks have
been analyzed in a similar manner.
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Figure 6. MMS1 measurements of shock crossing 5. The panels show, (a) magnetic field, (b) ion
velocity, (c) ion spectrogram, (d) electron spectrogram, (e) measured ion density (black) and density
obtained from plasma frequency (red), (f) calculated electron temperature, (g) electron kinetic entropy
per particle and (h) ion kinetic entropy per particle.

Tables 1–3 show the shock parameters for the 22 analyzed crossings. The number, date
and time of each shock are shown in Table 1, and reference to a specific shock crossing is
hereafter made using its number. The averaged upstream values of the magnetic field, ion
velocity, electron density, electron temperature and the shock normal in GSE-coordinates
for each crossing are also included in Table 1. Tables 2 and 3 show the change in electron
entropy, ∆Se, along with 10 other shock parameters, including the fast magnetosonic Mach
number, Alfvén Mach number, upstream electron plasma beta, shock angle, change in
density, change in electron temperature, adiabatic index, linear and non-linear whistler
Mach numbers and maximum electric field strength measured at the shock. The effective
adiabatic index for electrons is calculated based on an analytical expression; under the
assumption of constant heat capacities and reversibility, the change in entropy can be
expressed as [9,17]
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∆S = kB ln

[
nSW

nMSh

(
TMSh
TSW

) 1
γ−1
]

(13)

Assuming (13) applies for the different plasma species separately, the effective adiabatic
index γe for electrons can be determined for each shock crossing (see last column in Table 2).
It should be noted that Equation (13) is derived under assumptions not necessarily valid
for a collisionless shock. However, modeling the shock this way allows us to determine
the adiabatic indices from quantities derived via our corrected distribution function and
compare our results to previous work by Schwartz et al. [26] and Pudovkin et al. [27] (see
following section for further discussion). With 22 shock crossings analyzed, a statistical
study can be performed. In Figure 7, the change in kinetic electron entropy per particle,
∆Se, is plotted against the parameters listed above. Figure 8 depicts the effective adiabatic
indices for each shock crossing (panel (a)) and agreement with Equation (13) (panel (b)).
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Figure 7. The change in kinetic electron entropy per particle (∆Se) plotted against (a) solar wind
electron temperature, (b) difference in electron number density, (c) difference in electron temperature,
(d) Alfvénic Mach number, (e) upstream electron plasma beta, (f) shock normal angle, (g) Alfvénic
to linear whistler Mach number ratio, (h) Alfvénic to non-linear whistler Mach number ratio and
(i) maximum electric field strength measured across the shocks. Every asterisk represent a shock
crossing.



Entropy 2022, 24, 745 14 of 20

0.5 1 1.5 2 2.5 3 3.5

ln(T
2
/T

1
)

0.5

1

1.5

2

2.5
S

e
 /

 k
B
 +

 l
n

(n
2
/n

1
)

(a)

Data

 = 5/3

0 1 2 3 4 5 6

T / T
1

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

S
e
 /

 k
B

 = 5/3

(b)

Data

n/n
1
 = 1

n/n
1
 = 2

n/n
1
 = 3

Figure 8. The effective (average) adiabatic index for electrons of all 22 shock crossings is calculated to
be 〈γe〉 = 1.64± 0.07. Panel (a) shows the agreement with an adiabatic index of γ = 5/3, which is
the expected value for a monatomic gas with 3 degrees of freedom. Panel (b) displays the change in
entropy vs. change in temperature (black asterisks) and the analytical expression in Equation (13) for
three different density ratios with γe = 5/3. Here, index 1 indicates solar wind and 2 magnetosheaths.

4. Discussion

According to Table 2, the kinetic entropy increases across the shock in nearly all of the
crossings, except two that are discussed in the next paragraph. With energy being dissipated
at the shock, an increase in entropy is expected [17]. Collisionless shocks generating entropy
have been reported by Parks et al. [4] based on Cluster data. The entropy increase found
by Parks et al. [4], ∆Se ≈ 2kB, is significantly larger than the entropy increases found in
this study, from −0.06kB to 1.4kB. One reason for this inconsistency can be the different
definition of entropy used in Parks et al. [4] where the entropy is calculated using the Gibbs
entropy formulation S = −kB ∑ pj ln pj and j indexes the sampled phase space volume
element, pj = f j∆3vj/n. This definition of entropy is very sensitive to the instrument
resolution of the spacecraft, while calculating the entropy directly from the distribution
function allows comparisons to theory and simulations [5,6].

Although this paper focuses solely on electrons, the ion kinetic entropy is shown for
completeness in Figure 6h. Ion entropy generation at collisionless shocks is an important
topic of its own. However, the solar wind ion distribution function is not resolved properly
for the MMS satellites. Hence, the calculated ion entropy in the solar wind can not be fully
trusted. Therefore, a study of ion kinetic entropy is left for future studies.

Crossings 2 and 18 show a ∆Se ≈ −0.06 < 0, i.e., the entropy seems to decrease across
the shock. Note that both crossings exhibit ∆Se ≥ 0 values within their statistical error
margin (see Table 2) and the change is rather close to zero. Thus, the small negative value
might be due to statistical fluctuations. Alternatively, it can be due to leftover secondary
electrons from the manual removal procedure described in Section 2.3.2. The secondary
electron contamination has a decreasing effect on the change in electron entropy, ∆Se. If the
real change in entropy is positive but close to zero, any small leftover part of secondary
electrons could make the calculated ∆Se negative.

The gradual linear transition of the efficient secondary density used for the STL is
made mostly for illustration purposes, and drawing conclusions about entropy changes
within the STL must be taken with some consideration.



Entropy 2022, 24, 745 15 of 20

The standard deviations (errors) presented for ∆ne, ∆Te, ∆Se and the adiabatic index
should be viewed as a minimum error. There can be a systematic error introduced by the
secondary electron removal procedure that is not accounted for in the standard deviations
presented in Table 2 and Figure 8. This systematic error can originate from the manual fit of
the distribution function described in Section 2.3.2. An additional possible source of error
can be that no measurements of the plasma frequency in the magnetosheath downstream
of the shocks are available to cross-check the magnetosheath densities. However, we expect
the systematic error in the magnetosheath to be small as both ions and electrons have high
thermal energies allowing good measurements, and particle instruments are optimized for
measuring magnetosheath plasma.

Figure 7 shows the correlation of the shock parameters with the entropy change ∆Se.
Two parameters have a clear correlation with the entropy changes. First, Figure 7c shows
a clear relationship between ∆Se and ∆Te. This is expected due to energy dissipating
processes occurring at the shock [17]. Irreversible processes always increase entropy
and temperature [10]; hence, we expect an increase in entropy to yield an increase in
temperature. Secondly, Figure 7e shows a relationship between ∆Se and the electron
plasma beta, βe. High ∆Se is associated with low solar wind electron plasma beta, βe < 1,
while low ∆Se is associated with high solar wind electron plasma beta, βe > 1. This inverse
electron beta-dependence is qualitatively similar to what is theoretically predicted for
the total entropy per particle change vs. the total plasma beta across a collisionless shock
assuming a one-fluid MHD approximation, see Appendix A and Figure A2. However,
it is not obvious why similar relation should hold only for electron beta-dependence.
Future work can address this point by considering a two-fluid plasma description. For the
other shock parameters, no clear correlation with ∆Se is observed. Due to the strong ∆Se-
dependence on the electron plasma beta, we suggest that in future work, the dependence
on other parameters can be analyzed using more crossings but in a limited range of βe.

Now, we look at the effective adiabatic index for electrons 〈γe〉. Based on Figure 8a,
we can estimate 〈γe〉 for each of the crossings using Equation (12). We obtain that the
effective adiabatic index of 〈γe〉 = 1.64± 0.07. This value is in the vicinity of γ ≈ 5/3,
suggesting the electrons behave similarly to a monatomic ideal gas with three degrees of
freedom. This is consistent with previous work by Pudovkin et al. [27] but inconsistent with
previous work by Schwartz et al. [26]. Schwartz et al. [26] use data from several different
planetary bow shock encounters in the heliosphere and determine an effective polytropic
index using upstream and downstream measurements of the electron pressure and density.
Their study reports ideal gas behavior only for subcritical shocks and one-dimensional
(γeff ≈ 3.0) behavior for supercritical shocks. All our shocks are supercritical and still show
γ ≈ 5/3. The discrepancy might be explained by the lower quality of data used in [26]
and/or physical differences between heliospheric shocks.

We also compare our entropy values of the observed distribution functions with the
maximum entropy values calculated using the Maxwellian distribution having the same
electron density and temperature as the observed distribution function. Given plasma
density n and temperature T, Maxwellian distribution is defined

f (v) = n
(

m
2πkBT

)3/2
e−mv2/2kBT (14)

and using the definition of kinetic entropy density in Equation (1), an analytical expression
can be found for a maximum entropy [6]:

SM =
3
2

kB

[
1 + ln

(
2πkBT
mn2/3

)]
. (15)

Figure 9 shows a comparison between the entropy of a Maxwellian distribution and
the entropy calculated using the corrected distribution functions. The calculated entropy is
strictly less than the maximum state (Maxwellian) throughout the interval. This is expected
as distribution functions are not close to being Maxwellian.
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Figure 9. Comparison of the calculated entropy (blue) to the entropy of a Maxwellian distribution
(red) obtained from Equation (15). The temperature and density in Equation (15) are evaluated at
each point in the shock interval and plotted as the red lines in Figure 5.

5. Conclusions

We use MMS data to calculate the kinetic entropy per particle across Earth’s quasi-
perpendicular bow shock. All data are obtained using the MMS1 spacecraft. With the
close separation of the spacecraft and the change in entropy obtained by taking upstream
and downstream averages, the difference between the spacecraft data will be negligible.
Altogether 22 quasi-perpendicular shock crossings have been analyzed. The electron kinetic
entropy per particle is calculated using the kinetic definition of entropy and the distribution
function measured by MMS1. It is shown that the measured electron distribution function
needs further calibrations when calculating the electron entropy, density and temperature.
The calibrations include the corrections for the spacecraft potential, the removal of sec-
ondary electron emissions, the extrapolation of distribution function values to zero energy
and the density calibration using the observed plasma frequency emissions. Our main
findings are:

• In total, 20 out of 22 crossings display an increase in the electron kinetic entropy going
from the solar wind to the magnetosheath in the range ∆Se ≈ 0.1− 1.4kB.

• Two crossings display a slight decrease, ∆Se/kB ≈ −0.06± 0.06 and ∆Se/kB ≈ −0.06±
0.09, but within error margins, they are still consistent with entropy not decreasing across
the shock.

• We observe that ∆Se displays a strong dependence on the change in electron tempera-
ture across the shock, ∆Te, and the upstream electron plasma beta, βe. Shocks with
high ∆Te are found to have high ∆Se. Shocks with small upstream βe are found to
generate more entropy than shocks with large upstream βe.

• For the parameters, MA, Mwh, Mwhn, TSW, ∆ne and Emax, no clear trend is observed,
and more crossings need to be analyzed.

• The effective adiabatic index of electrons is calculated for each shock crossing, using
the analytical expression relating entropy change to the change in density and tem-
perature, see Equation (13). We find that all shocks have an effective adiabatic index
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〈γe〉 = 1.64± 0.07 that is in the vicinity of 5/3. This suggests the electrons behave
similarly to a monatomic gas with three degrees of freedom.
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Appendix A. Analytical Calculation of Total Entropy Change across
Collisionless Shock

This section provides a theoretical prediction of the change in total entropy per particle
as a function of the upstream parameters of a shock in a single fluid approximation.
Starting from the Rankine–Hugoniot equations [28], the density and temperature ratios
can be determined solely by the upstream Alfvénic Mach number MA, shock angle θBn and
upstream total plasma beta β1.

Figure A1. The 1D shock geometry gives velocity and magnetic field components as V1 = V1n̂,
B1 = (Bn, 0, Bz1), V2 = (Vn2, 0, Vz2) and B2 = (Bn, 0, Bz2).

https://lasp.colorado.edu/mms/sdc
https://lasp.colorado.edu/mms/sdc
https://lasp.colorado.edu/mms/sdc
https://omniweb.gsfc.nasa.gov
https://omniweb.gsfc.nasa.gov
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We assume the ideal gas equation of state, an adiabatic index, γ, equal to 5/3 and
enthalpy per mass expressed as

h =
CpT

m
. (A1)

The Rankine–Hugoniot equations can then be written as

n̂ · {B} = 0 (A2)

n̂ · {NV} = 0 (A3)

{n̂× (V× B)} = 0 (A4)

n̂ · {mNVV}+ n̂
{

NkBT +
B2

2µ0

}
− 1

µ0
n̂ · {BB} = 0 (A5){

mNn̂ ·V
(

V2

2
+

CpT
m

+
B2

µ0mN

)
− 1

µ0
(V · B)n̂ · B

}
= 0 (A6)

Following Tidman and Krall [11], by introducing the normalized parameters

N2

N1
→ N2 ,

V2

V1
→ V2 ,

Bi

V1
√

µ0mN1
→ Bi ,

kBTi

mV2
1
→ Ti (A7)

Equations (A2)–(A6) reduce to

N2Vn2 = 1 (A8)

Bz2Vn2 −Vz2Bn = Bz1 (A9)

BnBz2 −Vz2 = BnBz1 (A10)

2N2(V2
n2 + T2) + B2

z2 = 2(1 + T1) + B2
z1 (A11)

V2
n2 + V2

z2 + 5T2 + 2Bz1Bz2 = 1 + 5T1 + 2B2
z1 (A12)

From Equations (A8)–(A12), the temperature ratio can be determined as

T2

T1
= 1 +

1
5T1

[
1−V2

n2 −
2B2

z1(Vn2 − 1)
(B2

n −Vn2)
−

B2
z1B2

n(Vn2 − 1)2

(B2
n −Vn2)2

]
(A13)

while Vn2 (the density ratio) needs to fulfil the following equation

a4V4
n2 + a3V3

n2 + a2V2
n2 + a1Vn2 + a0 = 0 (A14)

where the coefficients are given by

a0 = B2
n[B

2
1 + 5B2

nT1] (A15)

a1 =
1
2

B2
z1 − B2

n[2 + 5B2
1 + 5T1(2 + B2

n)] (A16)

a2 = 1 + 5T1 + 2B2
z1 + 2B2

n[5 + 2B2
1 + 5T1] (A17)

−a3 = 5 + 8B2
n +

5
2

B2
z1 + 5T1 (A18)

a4 = 4 (A19)

We see that the solution for Vn2 in (A14) will depend on the upstream parameters Bn,
Bz1 and T1, and hence, the same is true for the temperature ratio in (A13). By using the
normalization in (A7), these parameters can be expressed as
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B2
1 = 1

M2
A

(A20)

Bn = cos θBn
MA

(A21)

Bz1 = sin θBn
MA

(A22)

T1 = β1
2M2

A
(A23)

and hence, using Equation (13) (with γ = 5/3), the total entropy change can be calculated
via the upstream parameters θBn, MA and β1 by determining Vn2 = N1/N2 numerically
from (A14) and T2/T1 from (A13). The result is illustrated in Figure A2.
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Figure A2. Theoretical prediction of the total entropy change across collisionless shock in a one-fluid
plasma approximation.
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