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Abstract

Super-Alfvénic jets, with kinetic energy densities significantly exceeding that of the solar wind, are commonly
generated downstream of Earthʼs bow shock under both high- and low-beta plasma conditions. In this study, we
present theoretical evidence that these enhanced kinetic energy flows can be driven by firehose-unstable
fluctuations and compressive heating within collisionless plasma environments. Using a fluid formalism that
incorporates pressure anisotropy, we estimate that the downstream flow of a collisionless plasma shock can be
accelerated by a factor of 2–4 following the compression and saturation of firehose instability. By analyzing quasi-
parallel magnetosheath jets observed in situ by the Magnetospheric Multiscale (MMS) mission, we find that
approximately 11% of plasma measurements within these jets exhibit firehose-unstable fluctuations. Our findings
offer an explanation for the distinctive generation of fast downstream flows in both low (β< 1) and high (β> 1)
beta plasmas, and provide new evidence that kinetic processes are crucial for accurately describing the formation
and evolution of magnetosheath jets.

Unified Astronomy Thesaurus concepts: Planetary bow shocks (1246); Interplanetary shocks (829); Interplanetary
turbulence (830)

1. Introduction

Shocks are ubiquitous in astrophysical plasma environments
and serve as some of the most efficient sites for particle
acceleration in the Universe. These shocks are generated
whenever supersonic and super-Alfvénic stellar flows collide
with obstacles such as planetary or interstellar magnetic fields.
During such interactions, the kinetic energy density of the
stellar wind is converted into thermal and magnetic energy,
resulting in a compressed and heated plasma, as well as an
increase in entropy (R. M. Kulsrud 2005). However, this
conventional understanding of astrophysical shocks has been
challenged in recent decades by the discovery of a puzzling
phenomenon: magnetosheath jets (Z. Nemecek et al. 1998;
S. Savin et al. 2008; H. Hietala et al. 2009; M. O. Archer et al.
2012). These jets, first observed in situ downstream of Earthʼs
bow shock,3 have been shown to exhibit flow velocities that are
comparable to those of the upstream flow.4 This paradox raises
a fundamental question in fundamental plasma physics: How
can a supersonic and super-Alfvénic flow cross a shock,
decelerate, and heat the plasma, yet emerge with increased
kinetic energy density? Resolving this apparent contradiction is

crucial for advancing our understanding of shock dynamics in
astrophysical plasmas, with significant implications for particle
acceleration processes (S. Perri et al. 2022), in particular since
the efficiency of diffusive shock acceleration is dependent on
the difference between upstream and downstream flow
velocities (E. Fermi 1949; D. Caprioli & A. Spitkovsky
2014; J. Park et al. 2015).
Since the discovery of magnetosheath jets, several mechan-

isms have been suggested to explain their generation. H. Hietala
& F. Plaschke (2013) suggested a mechanism in which a
localized ripple in the bow shock could lead to the refraction and
penetration of the plasma without dissipation, such that the flow
downstream of the shock is effectively comparable to the flow
upstream. M. O. Archer et al. (2012) suggested that jets are
caused by solar wind pressure pulses or rotational discontinuities
that can enhance kinetic energy density downstream of the
shock. T. Karlsson et al. (2015) associated the formation of jet
with transient coherent structures observed upstream of the
Earth’s bow shock known as short large-amplitude magnetic
structures (SLAMS). SLAMS are steepened foreshock fluctua-
tions with thermal and magnetic field energy sometimes several
multiples of the kinetic energy density in the solar wind. More
recently, S. Raptis et al. (2022b) have shown direct observations
of downstream super-magnetosonic jets generated directly from
the evolution of upstream fluctuations and the shock reformation
cycle, thus suggesting a mechanism that relies on kinetic scale
instabilities.
Statistical studies of spacecraft data by F. Plaschke et al.

(2013) and S. Raptis et al. (2020) found evidence for both the
bow shock ripple mechanism suggested by H. Hietala &
F. Plaschke (2013) and the SLAMS mechanism of T. Karlsson
et al. (2015). However, from an observational perspective, the
problem with trying to prove these theories based on
observations is that the spacecraft are seldom, if ever, in a
suitable array such that both the production mechanism and the
resulting jet can simultaneously be identified unambiguously.
This task is now made much more difficult by the recent
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3 Recent studies have also shown that jets are generated in the magnetosheath
of other planets such as Mars and Jupiter (H. Gunell et al. 2023; Y. Zhou et al.
2024) and downstream of interplanetary shocks (H. Hietala et al. 2024). Since
jets are commonly observed downstream of quasi-parallel supercritical shocks,
they should also be present in a wide range of high-Mach-number astrophysical
shocks of other planetary environments.
4 The magnetospheric literature describes jets in terms of dynamic pressure
ρu2, where ρ is the mass density and u is the flow velocity (F. Plaschke et al.
2018). In this communication, we prefer to describe jets in terms of kinetic
energy density ρu2/2, since it is the quantity that enters in the conservation of
energy equation for the macroscopic plasma model of G. F. Chew et al. (1956)
that we use in Section 2.
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recognition that the majority of jets are much smaller in scale
than previously reported (F. Plaschke et al. 2020), and that jets
are more likely to form at kinetic scales (S. Raptis et al. 2022a).

Moreover, from a theoretical perspective, whether one aims
to quantify the contribution to jets’ formation from the ripple
mechanism of H. Hietala & F. Plaschke (2013) or from the
mechanisms suggested by T. Karlsson et al. (2015) or S. Raptis
et al. (2022b), all rely on the presence of kinetic structures and
instabilities, such as SLAMS, either to deform the bow shock
surface, or to release their thermal and magnetic field energy
into kinetic energy. Every suggested mechanism therefore
relies on the presence of kinetic scale structures, but the
energetic contribution of kinetic processes in the generation of
jets has yet to be quantified analytically.5 Thus, the origin of
magnetosheath jets remains to this day an open question, in
parts because the energy sources at kinetic and fluid scales have
not been determined and quantified.6

In this communication, we identify for the first time the
mechanisms at the interface of fluid and kinetic processes that
can generate magnetosheath jets. By employing the Chew–
Goldberger–Low (CGL) fluid formalism, which integrates
kinetic effects such as pressure anisotropy (G. F. Chew et al.
1956), we uncover multiple contributing mechanisms to the
enhanced kinetic energy density at macroscopic scales. Our
theoretical approach enables us to precisely isolate the
influence of kinetic processes and determine the plasma
conditions under which alternative mechanisms may dominate.

The article is organized as follow. In Section 2, we present
the theoretical model based on the CGL equations and focus on
two sources for jets generation: (1) firehose-unstable plasma
and (2) compressive and rarefied plasmas for low- and higher-
beta plasma environments, respectively. In Section 3, we
provide initial observational verification to our theoretical
analysis by using measurements from the Magnetospheric
Multiscale (MMS) mission (J. Burch et al. 2016) downstream
of Earth’s bow shock to determine if the plasma inside of jets is
firehose unstable. In Section 4, we summarize our results by
arguing that any study of jets’ formation would require the
incorporation of kinetic processes.

2. Theoretical Methodology

2.1. Macroscopic Dynamics Due to Kinetic Processes

We consider the simplest set of equations for describing a
macroscopic plasma that incorporates kinetic effects. In this
formalism, the plasma is fully ionized and the pressure tensor
is gyrotropic. However, pressure anisotropy—where the
pressures parallel and perpendicular to the local magnetic
field lines differ—can be generated, sustained, and dynami-
cally tracked. This approximation is valid for motions
occurring on spatial and temporal scales significantly larger
than those associated with ion gyromotion. For jets much
larger than Larmor scales, this low-frequency, long-

wavelength limit provides a solid foundation for analytically
estimating the impact of kinetic processes on macroscopic
quantities such as density and mean flow. It leads to the
following macroscopic equations for the magnetic field and the
first three moments of the plasma distribution function
(G. F. Chew et al. 1956; R. M. Kulsrud 1983; A. Schekochihin
et al. 2010; J. Squire et al. 2017):
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The equations are written in Gauss units; u and B are the ion
flow velocity and magnetic field. The unit vector b= B/B
denotes the background field direction. The ion mass density is
denoted as ρ, and the ion collision frequency as νc. The
components of the pressure tensor p⊥ and p∥

7 are parallel and
perpendicular to the magnetic field and summed over the ion
and electron species. The heat fluxes q⊥ and q∥ are defined and
calculated similarly. We define departure from isotropy with
the following parameter:
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If the heat fluxes are not negligible, they need to be solved
kinetically or require the use of a closure scheme (G. W. Ham-
mett et al. 1992; T. Passot et al. 2012). In the following, we
focus on the impact of pressure anisotropies on macroscopic
plasma properties and discuss the necessity to account for heat
fluxes as well as pressure anisotropies in the conclusion. Our

5 Analytical studies of magnetosheath jets that incorporate kinetic processes
are currently missing, but it should be pointed out that kinetic-hybrid
simulations have been conducted; e.g., see L. Preisser et al. (2020), J. Suni
et al. (2021), M. Palmroth et al. (2021), Y. Omelchenko et al. (2021), and
references therein. Numerical studies are necessary to characterize magne-
tosheath jets but need to be complemented by analytical studies to determine if
the kinetic structures observed in simulations and in situ hold sufficient energy
to explain the formation of jets.
6 See F. Plaschke et al. (2018) for a more recent summary of numerical and
observational results.

7 In principle, the pressure should be solved kinetically for each species, but
in the equivalent formalism of kinetic-MHD, only the ion pressure is
considered. This approximation can be formally justified by an expansion in
the electron-ion mass ratio when the electrons are moderately collisional (see
Appendix A of M. S. Rosin et al. 2011). In the Earth’s magnetosheath, the
electron pressure is smaller than the ion pressure by a factor

-m v m v 10e te i ti
2 2 1 . The neglect of electron pressure in collisionless

magnetosheath environments produced from large Mach number shocks might
require two-fluid treatment.
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aim is to use Equations (1)–(5) to determine the conditions
under which kinetic energy in the plasma can be enhanced at
levels comparable to or greater than the Alfvén speed

pr=V B 4A 0 .

2.2. Quantifying Enhancement of Kinetic Energy

The set of Equations (1)–(5) can be used to determine what
mechanisms can produce enhancements in the kinetic energy
density Ek:
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ò

r
ºE

u
dV

2
. 7k

2

For closed and bounded volumes, the set of Equations (1)–(5)
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The evolution of the kinetic energy is controlled by five terms
annotated on the right-hand side of Equation (8). The first term
annotated as ① in the surface integral determines the rate at which
kinetic energy penetrates across the surface. The second and third
terms annotated as ② and ③ determine the rate at which pressure
and magnetic stresses do work on the boundary.8 The fourth term
④ quantifies the impact of compressive heating in terms of the
parallel plasma beta β∥= 8πp∥/B

2. Note how the effect of
compression reverses for β∥= 1. The fifth term ⑤ describes the
growth of kinetic energy density when the magnetic field
amplitude B grows and the coefficient - -

b
^1 T

T

2

 
is positive.

These latter two conditions are met for a kinetically dominated
firehose-unstable plasma (S. Chandrasekhar et al. 1958;
E. N. Parker 1958; P. Hunana & G. P. Zank 2017).

Equation (8) is instructive on multiple counts. It highlights
the contribution of pressure and temperature anisotropy on

kinetic energy growth, but also allows us to revisit known
mechanisms. For instance, the explanation for jets due to solar
wind penetration of a shock surface perturbed by coherent
structures suggested by H. Hietala & F. Plaschke (2013) is
contained in the first term of the surface integral.9 Similarly,
mechanisms assuming that enhanced density and thermal
pressures in the solar wind drive jets at the shock boundary
(M. O. Archer et al. 2012; M. O. Archer & T. S. Horbury 2013)
can be assimilated to the pressure stress term in Equation (8).
However, in the following, we ignore the surface terms in

Equation (8) and focus instead on quantifying the effects of
compression and firehose-unstable plasma in enhancing kinetic
energy far from the boundaries and for a small volume ¶ .10

For these instances, the contributions from the surface integral
in Equation (8) vanish and the evolution of the kinetic energy
can be written as
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Consequently, the kinetic energy can grow (decrease) for the
following cases.

1. Case 1. For an incompressible plasma · =u
r =d dtln 0, a positive (negative) correlation between

d B dtln and ( )b- -T̂ T1 2  can result in transfer of
thermal to (from) kinetic energy. This coefficient is
positive during the growth of firehose instabilities, that is,
when ( )b- - >T̂ T1 2 0  and >d B dtln 0. When
the plasma reaches firehose marginal stability and/or
when the magnetic field amplitude saturates, the kinetic
energy growth ceases.

2. Case 2. For a firehose-stable but compressible plasma,
kinetic energy density can grow for positive (negative)

correlations between ∇ · u and ( )-
b

1 1


. Hence, for low

8 We here envision a blob of plasma magnetically connected to the shock
transition layer. The boundary in question is at the shock transition layer where
kinetic energy can penetrate and thermal and magnetic pressure can apply a
tension force.

9 As noted by R. Blandford & D. Eichler (1987), a shock front can be
described as a surface of discontinuity across which mass, momentum, and
energy flow steadily. Although no shock wave is perfectly steady or
discontinuous, this assumption holds if the variation in flow variables occurs
over a distance much smaller than the corresponding scales ahead of and
behind the shock. Additionally, the overall flow pattern should remain
relatively unchanged during the time it takes for a fluid element to traverse the
shock. While the ripple mechanism of H. Hietala & F. Plaschke (2013) can
conceptually contribute to enhanced kinetic energy downstream, this relies on
the assumption that the quasi-parallel shock is locally stationary on spatial and
temporal scales comparable to those of SLAMS, which are specifically the
structures forming the quasi-parallel transition layer. It has also been known for
decades that the quasi-parallel shock produces a broad spectrum of turbulent
fluctuations (J. P. Eastwood et al. 2005) and coherent structures, ranging from
the ion gyroscale to the curvature scale of the Earth’s bow shock (S. J. Schw-
artz et al. 1985, 1992; X. Blanco-Cano et al. 2011; D. L. Turner et al. 2013;
L. B. Wilson et al. 2013; S. J. Schwartz et al. 2018). It is therefore difficult to
conceive of the quasi-parallel shocks as stationary on a wide range of spatial
and temporal scales. In the view of the authors, the effects due to shock
temporal and spatial variability require a perturbed study of MHD shocks. A
stability theory of hydrodynamical shock waves was developed more than half
a century ago by S. P. D’Iakov (1958) and V. M. Kontorovich (1958) for small-
amplitude perturbations, but is currently missing for large-amplitude perturba-
tions at MHD shocks.
10 While we acknowledge that the boundaries confining planetary magne-
tosheaths can hardly be described as closed and stationary domains, we here
assume that pockets of localized plasma downstream of the quasi-parallel
shock can experience either compression or injection of pressure anisotropic
plasma.
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plasma β∥(< 1), compression (∇ · u< 0) results in
kinetic energy density enhancement, whereas for high
β∥(>)1, rarefaction (∇ · u> 0) can lead to such an
enhancement.11

In the following, we prescribe background flow properties to
determine the conditions under which the kinetic energy can
grow to levels consistent with jets’ observations.

2.3. Enhancement in Kinetic Energy Density Due to Adiabatic
Compression and Rarefaction

We are interested in the case of a pure compressible
background flow u0 devoid of shear and its associated impact
upon the kinetic energy for a firehose-stable plasma. We write
the mean flow as u0i= Aijxj= λ(t)δijxj, with the diagonal matrix
Aij written in terms of the Kronecker delta δij and a time-
varying compression rate ( )l =t L L . If the compression is
anisotropic, we can define ( )l =^ ^ ^t L L and ( )l =t L L  
and write the matrix Aij as A= λ⊥(I− bb)+ λ∥bb. Using the
set of Equations (1)–(5) with zero heat fluxes in the
collisionless limit, it is easy show that the background flow
quantities evolve as follows:
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We note that the above solutions are consistent with the Chew–
Goldberger–Low invariants p⊥/ρB and p∥B

2/ρ3 (G. F. Chew
et al. 1956) for compression (L⊥,∥(t)� L⊥,∥(0)) and rarefaction
(L⊥,∥(t)� L⊥,∥(0)). We now assume an incompressible first-
order perturbation ∇ · u⊥1= 0 and compute the rate of change

of kinetic energy density for the low Mach number regime.12

Under these assumptions, the rate of change of kinetic energy
density can be written as
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For the sake of simplicity, we also set =L 0 and assume a
compression evolving linearly in time, i.e., L⊥(t)= L⊥(0)−Ubt
with Ub> 0. Equation (18) can then be written as
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The kinetic energy density normalized by the magnetic energy
density, i.e., ( )p=

~
E E B8 0k k

2, during compression of the
plasma, can be obtained from integration of the above
expression:
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We now make the following change of variables
⟶ ∣ ∣t ¢U t Lb 0 and ( ) ⟶ ( ) t¢ ¢ = -L t L t L 10 . The

resulting integral can then be written as
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We can therefore compute the resulting enhancement in kinetic
energy density as a function of the initial value of β∥ and time.
In Figure 1, we show the kinetic energy

~
Ek evolution as a

function of time τ for density compressions of ρ(t)/ρ(0)� 2.11 According to Equation (8), mirror-unstable plasma (see, e.g., M. W. Kunz
et al. 2014; A. Osmane et al. 2015, and references therein) would also be able
to contribute to fluctuations in the kinetic energy density. However, we here
omit mirror modes as a significant source for the following reasons: From
previous work, it is well-established that mirror modes saturate, always in the
nonlinear regime, through the trapping of thermal particles and pitch-angle
scattering (M. W. Kunz et al. 2014). Since mirror modes saturate at
δB/B0 ; 1/3 for T⊥/T∥ > 2/β⊥, they are unlikely to explain significant
enhancements in the kinetic energy density in quasi-parallel shocks, where
most jets are observed. However, it is possible that mirror modes contribute to
some of the smaller jets observed in quasi-perpendicular shocks.

12 In the low Mach number regime, we can neglect the density fluctuations,
i.e., ρ1 = ρ0. However, it is important to emphasize that, in a more realistic
compressible plasma—such as the magnetosheath—both compressible and
incompressible fluctuations can be generated. For the purposes of this analysis,
we assume the perturbed flow is incompressible, in order to allow for an
analytical solution and to determine whether enhanced flows can still be
generated under moderate compression of the background flow. Future studies
should address the role of compressible fluctuations, for a more complete
understanding.
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The lower the initial plasma beta, the higher the enhancement in
kinetic energy density. We note that this enhancement in kinetic
energy density is physically consistent with the study of
B. Lavraud et al. (2007) for kinetic energy density reaching
values on the order of the magnetic energy for low plasma beta.
For plasma conditions typical of the Earth’s magnetosheath in
proximity to the magnetopause boundary, kinetic energy density
initially in partition with magnetic energy density, i.e.,

( ) =
~
E 0 1k , can be amplified into super-Alfvénic flows u of the
order of ( ) –pr ~B V V5 8 3.5 0 2 300 400A A0   km s−1.
However, this adiabatic compression follows the CGL relations
and results in a growth of the plasma beta toward β∥; 1. When
the plasma beta reaches a value of 1 due to compression, the
growth stops and reverses. Such a compressive mechanism can
therefore explain transient enhancement of kinetic energy
density in low plasma beta.

As noted in the previous section, rarefaction (∇ · u> 0) for a
high plasma beta β∥> 1 can also result in enhanced kinetic
energy density. Assuming once more an adiabatic flow that
expands linearly, as per L⊥(t)= L⊥(0)+Ubt with Ub> 0 and

=L 0 , we can compute the rate of change of kinetic energy
density. Using Equation (18) we find:

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( )
( )

( )

( )

b
t

t

- = -
+

+
+

-

~ ~
E t E 0

0

4
1

1

1

1

2

1

1
1 ,

k k 8

4



with the solution plotted for various values of initial plasma
beta in Figure 2. The kinetic energy density grows

monotonically, but as the plasma beta reduces to β∥; 1, the
kinetic energy density saturates. As τ? 1, the normalized

kinetic energy density saturates at a value of -
~ b
Ek 4

1

2
  .

Thus, for even moderate plasma beta values of 10, which are
commonly found in the magnetosheath (A. P. Dimmock et al.
2015), the kinetic energy density can grow by a factor of 2–3
with respect to the magnetic field energy density and result in
super-Alfvénic flows. We therefore close this section by
pointing out that compressed and rarefied plasma can in both
cases be associated with adiabatic enhancement in the kinetic
energy density. And as a result of compression for low-beta
plasma and rarefaction in high-beta plasma, the resulting
plasma beta parameter reaches values of β∥; 1, which is
consistent with observation of jets (S. Raptis et al. 2020).

2.4. Enhancement in Kinetic Energy Due to Firehose-unstable
Plasma

Plasma environments downstream of astrophysical shocks
are fertile grounds for the growth of pressure-driven instabil-
ities. In the effectively collisionless magnetosheath of the
Earth, one can think of at least three different mechanisms to
sustain pressure anisotropies: (1) locally at the shock transition,
due to compression and anisotropic ion heating; (2) in the inner
magnetosheath via (mesoscale) turbulent fluctuations; and (3)
closer to magnetopause boundary via large-scale field inho-
mogeneities. In the following, we assume that the pressure
anisotropy is driven at the shock boundary, since jets are
observed immediately downstream of the Earth’s bow shock.
To estimate the scale of the pressure anisotropy downstream of
collisionless plasma shock, we assume the applicability of the

Figure 1. Kinetic energy density normalized by the magnetic field energy density as a function of normalized time τ = |Ub|t/L0 for a compressible flow. Curves are
plotted for β∥(0) varying between 0.02 and 0.1. Larger kinetic energy densities are reached for lower initial β∥ values. The case study presented by B. Lavraud et al.
(2007) corresponds to such instance of kinetic energy density enhancement for low β∥ = 1. This figure indicates that the resulting flow can become super-Alfvénic
with values on the order of 2–3 times the Alfvén speed.
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Rankine–Hugoniot equation. With the Rankine–Hugoniot
relations, one can estimate the associated temperature or
pressure anisotropy as a function of Mach number for
parameters consistent with the Earth’s quasi-parallel shock.
The estimated values for the firehose-instability criteria down-
stream of the Earth’s bow shock are shown in Figure 5 of the
Appendix. We here infer from the Rankine–Hugoniot condi-
tions that quasi-parallel shocks (θBn< 30° and 4<MA< 20)
can seed downstream plasmas with temperature anisotropies
T⊥/T∥; 0.1− 0.5 and firehose-instability criteria |Δ0+ 2/β∥|
in the [0.1–1] range.13

In the instance where the plasma experiences adiabatic
compression, we can use Equations (14), (15), and (16) to
determine when the stability criteria for the parallel firehose
(k⊥= 0) is violated:
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It is clear from the above equation that, even if the plasma is
initially stable to firehose instability, compression drives the

plasma to the firehose-unstable threshold. Similarly, an initially
firehose-unstable plasma can be made stable by rarefaction—
and, in the process, trigger the mirror instability. Using the
parameter regime of the previous section ( =L 0 ,
β∥(0); 0.1–1) and T⊥(0)/T∥(0)= 0.75–0.95, Equation (21)
provides us with a density compression of order 3/2 to 4 and a
time τ; 1/2 for the firehose instability to be triggered. Thus,
firehose instability can be sustained through locally induced
compressive fluctuations commonly found in the turbulent
magnetosheath (F. Sahraoui et al. 2020).
In order to quantify the amplification of the perturbed flow

δu⊥ arising from the triggering of the firehose instability, either
through adiabatic compression or non-adiabatic heating at the
shock, we use the asymptotic theory of M. S. Rosin et al.
(2011) derived for the case where the instability could be
driven by shear and compression of the mean flow. In the
absence of collisions, the anisotropy for the parallel firehose
evolves according to

( ) ( ) ( ) ( )ò g
d

D = D + ¢ ¢ + ^t dt t
B

B
0 3 , 21

t

0

2

0
2

where γ is the drive rate14 bringing the anisotropy to unstable
levels, and the bar above the perturbed normalized magnetic
energy denotes an average over fast timescales. Saturation
occurs when Δ(t);−2/β∥ after magnetic field fluctuations
locally reduce the plasma beta. Using the asymptotic construc-
tion of M. S. Rosin et al. (2011), we integrate the firehose

Figure 2. Kinetic energy density normalized by the magnetic field energy density as a function of normalized time τ = |Ub|t/L0 for an expanding flow. Curves are
plotted for β∥(0) varying between 2 and 12. Larger kinetic energy densities are reached for higher β∥ values. This figure indicates that high plasma beta rarefied flows
can become super-Alfvénic, with values of the order of 2–3 times the Alfvén speed.

13 We note that higher values in the firehose-instability criteria are theoretically
possible according to Rankine–Hugoniot relations, but effectively impossible
to be observed in situ, since the associated instability growth rate is too fast
(C. F. Kennel & R. Z. Sagdeev 1967; A. Schekochihin et al. 2010).
Observationally, what is measured is the saturated anisotropy level (S. D. Bale
et al. 2009; A. P. Dimmock et al. 2015). In terms of modeling, such large
instability criteria cannot be treated through perturbation methods, as done in
M. S. Rosin et al. (2011), and require more advanced theoretical and numerical
studies.

14 The drive rate in astrophysical plasmas, whether originating in compressive
or shear motion, is related to the change in magnetic field amplitude, i.e.,

·g ~ =  -bb u ud B dtln : .
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equations for the perturbed flow velocity,
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and the perturbed magnetic field,
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In the above, vthi stands for the ion thermal velocity, and Ωi for
the ion gyrofrequency. We set βi= 10 and ν/Ωi= 10−3, and
integrate for a single mode of scale kρi= 0.1 for a time
Ωit= 103, i.e., before one collision time. Figure 3 shows the
amplitude of the normalized perturbed flow for three initial
pressure anisotropies Δ(0)= [−0.1, −0.3, −0.5] consistent with
Rankine−Hugoniot estimates. We note that, for Δ(0)=−0.1,
the flow perturbation is modest, with u⊥1/u0� 10−3. On the
other hand, for |Δ(0)|� 0.3, appreciable flow perturbations on
the order of u⊥1/u0; 0.1–1 are found. Such flow enhancements
associated with large temperature anisotropies would therefore
appear as kinetic scale jets in the magnetosheath. However, it
should be kept in mind that, when perturbation becomes
comparable to the background, the asymptotic theory of
M. S. Rosin et al. (2011) formally breaks down and additional
theoretical and numerical work is needed to probe the

contribution of shocked plasmas far from marginal stability.
Nonetheless, our results provide evidence that firehose fluctua-
tions can produce enhancement in kinetic energy density
downstream of shocks.

3. Initial Observational Support

3.1. Data Set

To evaluate the theoretical approach described above
regarding the firehose-unstable plasma and provide an initial
observational validation, we used measurements from the
MMS mission (J. Burch et al. 2016). MMS is particularly well-
suited for this type of analysis, as it can provide subsecond-
resolution particle moments and distributions in burst mode,
allowing us to obtain measurements that are comparable to the
maximum growth rates of the instabilities (C. F. Kennel &
R. Z. Sagdeev 1967; A. Schekochihin et al. 2010). We
employed the Fluxgate Magnetometer instrument with a time
resolution of 0.0625 s (C. T. Russell et al. 2016). For ion
particle moments, we used the Fast Plasma Investigation (FPI)
instrument, which provides particle moments in burst time
resolution of 0.15 s (C. Pollock et al. 2016).

3.2. Jet Observations and Calculations

To evaluate jets downstream of the Earth’s bow shock, we
used an expanded data set from S. Raptis et al. (2020).
Specifically, we selected a subset of a magnetosheath jet list
formed out of five years of in situ MMS observations (2015

Figure 3. Evolution of the perturbed flow associated with a firehose instability for three initial pressure anisotropies Δ(0) = [−0.1, −0.3, −0.5]. The time is
normalized by the Larmor frequency. It takes t ; 100/Ω ; 16 Larmor periods T = 2π/Ω for the flow to become comparable to the background flow.
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May–2015 June). In this data set, jets are defined using the
typical criterion of in situ studies, where a jet must have a
dynamic pressure ( r=P uidyn

2), where ui is the ion velocity,
exceeding twice the background magnetosheath value
(M. O. Archer et al. 2012; M. O. Archer & T. S. Horbury
2013; F. Plaschke et al. 2018; S. Raptis et al. 2020). This
criterion can be expressed as

( )á ñP P2 , 23jet msh 20 min

where á ñPmsh 20 min represents a moving average window of
20 minutes across the magnetosheath time series observations.
Jets are initially found using the low-resolution measurements
of MMS (“fast” mode—4.5 s) and then characterized as a
separate subset that contains burst-mode data. More informa-
tion regarding the data set and its open-access availability
can be found in the associated open-access data set
(S. Raptis 2022).

For our analysis, we selected a suitable set consisting of 85
quasi-parallel magnetosheath jets observed near the Earth’s
bow shock, for which burst data were available throughout the
entire duration of the jet observation (i.e., all points that satisfy
Equation (23)), resulting in about 16,300 data points. Using ion
moments from the FPI instrument and resampled magnetic field
data to match the resolution of the particle instrument, we
calculated the temperature anisotropy (T⊥/T∥) and β∥.

Figure 4 presents all jet-associated observations in a scatter
plot, along with the thresholds for oblique firehose and mirror
instability (S. D. Bale et al. 2009). Approximately ∼11% of data
points within jet observations are considered firehose unstable,
with the majority of jets (60%) exhibiting at least two data points
that are firehose unstable and 6% of all jets containing >30% of

data points being firehose unstable. While this latter number is a
low percentage, these jets are located downstream of an
extended magnetosheath region, which is less prone to plasma
instability compared to short-duration intervals near the shock,
not included in the data set by S. Raptis et al. (2020). Expanding
these statistics to jets throughout the whole quasi-parallel
magnetosheath yields similar results.
It should be noted that this observational test ought to be

treated as a lower threshold and as preliminary evidence that
the presented theoretical framework in terms of firehose-
unstable generation is applicable to a significant number of
magnetosheath jets. A more in-depth analysis is required for
the following reasons: (1) Jets are expected to reach marginal
stability as they get convected away from the shock transition
layer and propagate into the magnetosheath. This dependence
on the magnetosheath location can be quantified in a more
detailed observational study. (2)When the firehose instability is
triggered far from marginal stability levels, which takes place
when T⊥/T∥= 1 and β∥? 1, the resulting fluctuations can
push the plasma well above the stability threshold
(A. F. A. Bott et al. 2021). Thus, some of the fluctuations in
Figure 4 that are above the marginal stability level could also
have originated from firehose-unstable sources. However, in
order to quantify this effect, one needs to run numerical
simulations of pressure-driven instabilities far from marginal
stability that can account for the oblique firehose (k⊥≠ 0) at
inertial and Larmor scales and the fluid firehose at macroscopic
scales. Future observational efforts should focus on case and
statistical studies of measurements taken exceptionally close to
the shock transition layer, with an evaluation of the stability
criteria that accounts for large departures from marginal
stability.

Figure 4. MMS observations of quasi-parallel magnetosheath jets close to the bow shock using high-resolution burst measurement as shown in the temperature
anisotropy (T⊥/T∥) vs. ( )blog2  scatter plot. Instability thresholds for oblique firehose instability (lower red dotted line) and the mirror instability threshold (top dotted
black line) are shown (S. D. Bale et al. 2009). Each mark represents one data point of 0.15 s resolution. The nontransparent points are below the firehose-instability
threshold (∼11%).
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4. Conclusion

Magnetosheath jets, characterized by enhanced kinetic
energy density, are frequently generated downstream of Earthʼs
bow shock (Z. Nemecek et al. 1998; S. Savin et al. 2008;
H. Hietala et al. 2009). Decades after the first observation of
jets, the underlying mechanisms driving their formation and the
role of kinetic processes remain an unresolved issue. In this
report, we have used a macroscopic plasma model that
incorporates kinetic processes to determine the plasma
conditions under which kinetic energy density can be
amplified.

We have shown that, for β< 1, plasma compression results
in enhancement in kinetic energy density. This instance
corresponds to the case previously presented by B. Lavraud
et al. (2007) in which abnormally low-beta plasma (β; 0.1)
downstream of the shock results from the interaction of a
magnetic cloud with the Earth’s magnetosheath. As the plasma
is being compressed near the boundary, flows of the order of a
few Alfvén speed u; 2VA; 300–400 km s−1 are generated.
While these values are below the flow on the order of
900 km s−1 observed by B. Lavraud et al. (2007), they are
computed for modest adiabatic compression on the order of
δρ/ρ� 2, and do not take into account boundary effects found
in Equation (8).

In high-beta plasmas, two mechanisms can lead to enhanced
kinetic energy density. In the case of plasma expansion, flows
become super-Alfvénic under typical magnetosheath plasma
beta conditions of β∥; 10 (A. P. Dimmock et al. 2015). For
firehose-unstable plasmas with β> 1, which are more likely to
occur downstream of the quasi-parallel shock (E. Yordanova
et al. 2020), it was shown, using the asymptotic model of
M. S. Rosin et al. (2011), that kinetic energy can grow to levels
comparable to the background flow, which results in a doubling
of the flow speed. Similarly, as for the case with β< 1, the
resulting flows triggered by firehose instabilities are below the
largest observed values. However, larger pressure anisotropies
should result in larger energy deposition in the kinetic energy
density and in magnetic fluctuations. Moreover, in treating
compressive and incompressive processes independently from
one another, we have also been assuming that one source term
in Equation (8) dominates over the other. Specifically, for the
firehose-stable case, while term #5 in Equation (8) does
influence the kinetic energy density, we assume that, on
average, it results in no net gain. Overcoming these assump-
tions requires theoretical and numerical studies that currently
lie beyond our current understanding of pressure-driven
instabilities.15

Similar to the ripple mechanism proposed by H. Hietala &
F. Plaschke (2013), the high plasma beta mechanism associated
with firehose instability discussed in this report aligns with the
conditions that favor jet formation, specifically that high-speed
jets predominantly occur downstream of the quasi-parallel
shock when the interplanetary magnetic field and the normal
vector of the shock have small angles (θBn< 45). However, the
firehose mechanism offers an additional advantage by explain-
ing multiple jet properties that, taken in combination, are
inconsistent with the ripple scenario. For example, S. Raptis

et al. (2020) found that quasi-parallel jets have lower plasma
beta compared to the surrounding magnetosheath plasma, while
F. Plaschke et al. (2013) demonstrated (see Figure 9) that jets
are more isotropic than the surrounding magnetosheath plasma.
A plasma that is warmer than the solar wind but exhibits a
lower beta parameter and reduced anisotropy compared to the
surrounding magnetosheath is consistent with the saturation of
firehose fluctuations downstream of the quasi-parallel shock.
Finally, another kinetic source that can sustain enhanced

kinetic energy density—or equivalently, trigger pressure
anisotropies leading to jet formation—is heat fluxes. Observa-
tional studies have shown for decades that strong field-aligned
heat flux persists across the entire magnetosheath, from the
magnetopause to the bow shock (T. Z. Liu et al. 2024), making
the production of heat flux instabilities in the high-beta plasma
magnetosheath plausible (A. Schekochihin et al. 2010;
M. S. Rosin et al. 2011). With recent observational evidence
indicating that jets occur on smaller scales than previously
reported (F. Plaschke et al. 2020; S. Raptis et al. 2022a), our
results provide new justification for the inclusion of kinetic
processes in understanding the generation and evolution of
magnetosheath jets. Future research should explore the role of
heat fluxes, boundary stresses, and the specific conditions
under which plasma compression and instabilities combine to
produce super-Alfvénic jets.
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Appendix
Rankine–Hugoniot Estimate of Temperature Anisotropy

In order to estimate the shock conditions required to sustain
firehose-unstable plasmas, we solve the Rankine–Hugoniot
equations that incorporate temperature anisotropies for the
shock-angle θBn, the angle between the interplanetary magnetic
field and the shock normal. The Rankine–Hugoniot relations in
the shock frame are given by Y. Liu et al. (2007), and since the
equations are undetermined, we need to fix one parameter to
solve them. We follow the approach of Y. Liu et al. (2007) and
fix the ratio of downstream to upstream density r= ρ2/ρ1. The
numerical solutions are shown in Figure 5 for the temperature
anisotropy and Figure 6 for the firehose-instability criteria. We
note that, according to the Rankine–Hugoniot relations, the
firehose-instability criterion is larger for high-Mach-number
quasi-parallel shocks, but that when the Mach number is less
than 6, firehose-unstable plasma can be generated for both
quasi-parallel and quasi-perpendicular shocks.

15 The derivation of M. S. Rosin et al. (2011) also neglects the compressibility
of the firehose fluctuations. This neglect is justified for β? 1 and
δB⊥/B0 = 1. These two conditions are seldom respected in the magnetosheath,
a region formed as the result the compression of the solar wind, and where
compressible fluctuations can scale as δρ ∼ ρ0.
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