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Abstract. Analyzing multi-featured time series data is critical for space 
missions making efficient event detection, potentially onboard, essen-
tial for automatic analysis. However, limited onboard computational 
resources and data downlink constraints necessitate robust methods for 
identifying regions of interest in real time. This work presents an adap-
tive outlier detection algorithm based on the reconstruction error of 
Principal Component Analysis (PCA) for feature reduction, designed 
explicitly for space mission applications. The algorithm adapts dynami-
cally to evolving data distributions by using Incremental PCA, enabling 
deployment without a predefined model for all possible conditions. A 
pre-scaling process normalizes each feature’s magnitude while preserving 
relative variance within feature types. We demonstrate the algorithm’s 
effectiveness in detecting space plasma events, such as distinct space 
environments, dayside and nightside transients phenomena, and transi-
tion layers through NASA’s MMS mission observations. Additionally, we 
apply the method to NASA’s THEMIS data, successfully identifying a 
dayside transient using onboard-available measurements. 

Keywords: Outlier detection · Incremental PCA · Space mission 
data · Online learning 

1 Introduction 

Space missions, such as NASA’s Magnetospheric Multiscale (MMS) Mission [ 1] 
and Time History of Events and Macroscale Interactions during Substorms 
(THEMIS) [ 2], generate large volumes of multi-featured time series data from 
in-situ measurements. These data require efficient methods for identifying and 
prioritizing scientifically relevant events. More broadly, large-scale data collec-
tion is essential across various scientific domains, including Earth-based weather 
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monitoring [ 3] and Hyper Spectral Imaging (HSI) from Earth observation (EO) 
satellites [ 4]. In space missions, limited onboard computational resources and 
restricted downlink capacity necessitate real-time event detection to prioritise 
the most valuable data for transmission [ 1]. 

A challenge in analyzing space mission data is detecting outlier data points. 
These outliers may indicate both instrument failures and important physical 
phenomena occurring in the near-earth space environment, such as plasma envi-
ronment crossings, magnetic reconnection events, or transient events. While some 
outliers may result from sensor anomalies or noise, others may reveal structures 
or processes not accounted for by existing models [ 5]. Traditional anomaly detec-
tion methods often assume static data distributions, which is generally not true 
for space plasma environments: dynamic changes in solar wind conditions and 
magnetospheric interactions can lead to evolving data characteristics. 

One additional challenge for in-situ automatic data analysis is that onboard 
computational resources are largely constrained. These devices can only support 
lightweight and adaptive algorithms capable of processing high-dimensional data 
streams in real time [ 6]. Many existing methods require extensive prior knowledge 
of the data or rely on complex models that are impractical for deployment on 
resource-limited spacecraft. An effective approach should balance computational 
efficiency with the ability to detect scientifically meaningful outliers without 
extensive pre-training on specific datasets. 

In this work, we present an outlier detection algorithm tailored for space 
missions. The method leverages reconstruction error from Principal Compo-
nent Analysis (PCA) for feature reduction and adapts dynamically to new data 
distributions using Incremental PCA. This enables real-time outlier detection 
onboard spacecraft. Our focus is on evaluating the algorithm’s principle for use 
in detecting outliers and demonstrating the algorithm’s effectiveness in identi-
fying plasma events such as bow shock crossings in MMS data and foreshock 
bubbles in THEMIS observations. The main contributions of this work are the 
following: 

– Introduce an adaptive outlier detection algorithm based on the PCA recon-
struction error, which can be applied to streaming data. The algorithm works 
without a pre-training step and dynamically adapts to the dominant features 
in new data. 

– Extend the algorithm to handle different feature types with different magni-
tudes by coupling the feature scaling to a group with features of the same 
type. This approach preserves the relative variance within each feature group. 

– Demonstrate the algorithm’s effectiveness in finding boundary crossings and 
other scientifically interesting events in MMS data using multiple features. 

– Show that the algorithm can detect scientifically relevant events in data avail-
able onboard the spacecraft using the THEMIS mission, potentially support-
ing real-time identification.
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2 Background 

In this work, we focus on the use-case of finding outliers in multi-featured space 
plasma time-series data using MMS [ 1], launched in 2015 and THEMIS, launched 
in 2007 [ 2], as examples. MMS was launched to investigate magnetic reconnection 
in the boundary regions of Earth’s magnetosphere using unprecedented time 
scales. It consists of four spacecraft flying in formation through the dayside 
magnetopause and the nightside magnetotail regions [ 1]. 

The THEMIS mission was launched to investigate the trigger and evolution of 
substorms. The mission consists of five satellites, lining up to track particles along 
the magnetotail. While the primary mission goal was to perform measurements in 
the magnetotail, in the nightside region of Earth’s magnetosphere, the spacecraft 
also obtained measurements from the dayside region [ 2]. In this work, we have 
used an interval of dayside data from THEMIS. 

Both MMS and THEMIS have limited storage capabilities, constraining the 
amount of data that can be collected. Furthermore, the presence of limitations 
in the downlink capabilities means that the collected data of the highest possible 
value has to be prioritized. The collection limitation and prioritization were per-
formed using pre-specified temporal region-of-interests (ROI) with corresponding 
locations in space, using onboard calculated indicator values and human-made 
selections. These selections are intended to prioritize the most valuable mission 
data, especially those that are significantly different from the general state of 
the regions and have a high likelihood of containing interesting events [ 1, 2]. 

As spacecraft orbit Earth, they transition through multiple regions, including 
the magnetosphere, where Earth’s magnetic field shapes the plasma environment 
and areas beyond its protective influence, where the solar wind and the Sun’s 
magnetic fields dominate. They also traverse key boundaries such as the bow 
shock, where the solar wind slows and deflects and the magnetopause, which 
separates Earth’s magnetic domain from the solar wind. Classifying which region 
the measurements belong to can help direct scientists toward phenomena of more 
interest [ 7]. Determining the regions and finding the crossings between them can 
help to optimize the data collection onboard the spacecraft. 

2.1 Outlier Detection in Streaming Data 

Outlier detection deals with finding samples, or groups of samples, that differ 
from the general structure of the remaining samples. Traditionally, most outlier 
detection methods deal with static data where the entirety of the data range is 
known [ 8]. If the data is high-dimensional, feature reduction techniques, such as 
Principal Component Analysis (PCA) [ 9] or Autoencoders [ 10], can be utilized 
to simplify the problem and reduce the search space [ 5]. 

However, streams of data add to the complexity of finding outliers. The 
temporal variability of the data means that what is considered an outlier can 
shift with time. The nominal values of a feature and feature importance may 
also shift in time [ 5]. This can render an initial data model incorrect and any 
outlier detection algorithm needs to be able to adapt to these shifts in the data.
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PCA is a linear feature reduction method that surfaces the top N features, the 
Principal Components (PC) containing the most variance (i.e. information), from 
the original feature space [ 11]. Once in the reduced feature space, the samples 
can be separated into groups using different clustering techniques [ 10,12]. Then, 
outliers can be located based on the distance to these clusters’ centroids or the 
density. Another option for finding outliers is to transform the samples back 
to the original feature space and evaluate how much the reconstructed features 
(Rf ) differ from the original features (Ff ). This reconstruction error (Ef ): 

Ef = Rf − Ff (1) 

is the loss of information from the feature reduction. Samples where features have 
large reconstruction errors will deviate from the PCA model and can, therefore, 
be considered outliers compared to the other samples [ 13]. Incremental PCA is 
a variant of PCA that can be used to build the PCA model incrementally [ 11]. 
This can be necessary if the data is too large to load all the samples into memory 
at once, or for the use-case presented in the paper, not all the data is available 
when the initial model is created. 

3 Methodology 

In this work, we present a method for detecting outliers in streaming multi-
feature data based on evaluating the reconstruction error stemming from feature 
reduction using Incremental PCA [ 11]. The reconstruction error Ei, for a sample 
i, is calculated as the Euclidean norm of the reconstruction errors Ef for all the 
features f . By looking for large and rapid changes in this error, we can find 
samples that deviate from the model and the previous samples. 

3.1 Outlier Detection 

The outlier detection algorithm 1 operates in three different modes, Initialization, 
Check and Calibrate, as shown in Fig. 1. In the initialization mode, (Fig. 1 - top), 
the initial model is built based on the first samples retrieved by the algorithm. 
Following the initialization mode is the check mode, which is the main operating 
mode (Fig. 1 - bottom right). Here, samples are retrieved and evaluated for 
outliers. If multiple sequential samples are labeled as outliers, then a calibration 
using these outlier samples is initiated. In the calibration mode, the PCA model 
is updated based on the latest outlier samples. 

There are five parameters controlling the execution of the algorithm: the 
calibration buffer size (Sc), the number of components (N) used in the  PCA,  
the mean buffer size (Sm), the threshold (λ) and the outlier limit (Lo). Sc con-
trols the size of the calibration buffer (c buffer). The calibration buffer is used 
to store samples to use for calibration. When this buffer is full, either in the 
initialization mode or the check mode, the PCA is calculated using the samples
1 https://github.com/Jonah-E/multi-feature-outlier-detection. 

https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
https://github.com/Jonah-E/multi-feature-outlier-detection
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in this buffer. N controls how many components of the PCA are calculated and 
thereby the size of the reduced feature space. A lower value will, in general, mean 
a higher reconstruction error, but changing this parameter can also change what 
events are discovered by the algorithm. Sm controls the size of the mean buffer 
(m buffer). The mean buffer is a fixed width circular buffer used to store the 
reconstruction error (Ei) of the latest Sm samples not labeled as outliers. This 
buffer is then used to calculate the current mean μ and standard deviation σ. 

Fig. 1. Flowchart describing the working principles of the adaptive algorithm. 

The μ and σ values are then used together with the threshold λ to calculate 
the maximum allowed reconstruction error, or the error threshold Ti, according 
to the equation 

Ti = μ + λσ (2) 

A sample xi with error Ei exceeding Ti will be labeled an outlier. The last 
parameter, Lo, controls how many samples xi can be labeled as outliers before 
samples are added to the calibration buffer. Setting this to a value larger than 
zero will exclude the Lo first outlier samples from the calibration buffer. 

Initialization mode: is the start of the algorithm. Here, the algorithm builds 
the initial model by retrieving the next sample xi and then adding it to the 
calibration buffer. When the calibration buffer is full, the PCA is calculated 
using the samples in the calibration buffer. Following this, the reconstruction 
error (Ek) of the samples (xk) in the calibration buffer is calculated and added



258 J. Ekelund et al.

to the mean buffer. Depending on the application of the algorithm, it could be 
beneficial to pre-calculate the PCAs on a curated dataset containing data from 
expected regions. Then, the initialization step could be skipped. 

Check Mode: The first step in the check mode is to retrieve the next sample 
xi and calculate the Ei of this sample. Then μ and σ are calculated using the 
samples in the m buffer and Ti can be calculated according to Eq. 2. If the  Ei 

is larger than Ti, then the sample is labeled as an outlier and a counter (cnt) 
is incremented. If this counter exceeds Lo, then the sample xi is also added to 
the calibration buffer. If the sample is not an outlier, the calibration buffer is 
cleared, the counter is reset to 0 and the Ei is added to the mean buffer. Only 
samples not labeled as outliers are added to the mean buffer to prevent outlier 
samples from inflating the error threshold. The last step is to evaluate if the 
calibration buffer is full. If it is full, multiple samples in a row have been labeled 
as outliers and the PCA model is likely no longer correct. Then, a calibration is 
initiated. 

The calibration mode: is where the PCA is updated using the samples from 
the calibration buffer, bottom left in Fig. 1, before the algorithm reenters check 
mode and the next sample is processed. 

Table 1. MMS intervals with primary ROI, dayside data intervals are originating from 
Ref. [14] and nightside intervals from Ref. [15]. 

Nr Data Interval ROI Day or Nightside 
0 2017-12-14 16:00 → 2017-12-14 05:00 - Dayside 
1 2017-12-17 16:00 → 2017-12-17 22:00 17:52 → 17:54 Dayside 
2 2018-01-12 00:50 → 2018-01-12 06:00 01:50 → 01:52 Dayside 
3 2018-12-14 02:00 → 2018-12-14 07:20 04:21 → 04:22 Dayside 

04:40 → 04:42 
4 2018-12-10 04:00 → 2018-12-10 11:00 05:12 → 05:25 Dayside 

06:27 → 06:31 
5 2019-01-05 16:00 → 2019-01-05 19:00 17:38 → 17:41 Dayside 
6 2021-01-12 00:00 → 2021-01-12 06:00 01:18 → 01:21 Dayside 
7 2021-02-13 10:00 → 2021-02-13 18:00 11:05 → 11:06 Dayside 
8 2022-05-02 18:00 → 2022-05-02 22:00 18:23 → 18:25 Dayside 
9 2022-11-24 02:00 → 2022-11-24 09:00 04:16 → 04:18 Dayside 
10 2023-01-16 06:00 → 2023-01-16 11:00 08:21 → 08:24 Dayside 
11 2017-07-23 12:00 → 2017-07-23 18:00 16:55 → 16:56 Nightside 
12 2021-08-14 16:00 → 2021-08-15 06:00 01:23 → 01:25 Nightside
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3.2 Data and Pre-processing 

MMS Data: The primary data used in this paper is from MMS. Specifically, the 
omni-directional ion spectrum and ion velocities in GSE coordinates from the 
Fast Plasma Investigation (FPI) instrument [ 16] and the magnetic field (hereafter 
referred to as the B-field) from fluxgate magnetometers (FGM), part of the 
FIELDS instrument suite [ 17], from the MMS-1 spacecraft. Table 1 lists eleven 
dayside intervals of MMS data together with some regions of interest. These 
intervals are either from MMS passing into or out of the Earth’s magnetosphere 
from the Solar wind. Transitions from the solar wind to the magnetosheath 
are called bow shock crossings, while transitions from the magnetosheath to the 
magnetosphere are called magnetopause crossings. The data from the FGM is 
collected at a significantly higher frequency, ∼ 8 Hz to  ∼ 16 Hz, than the FPI 
data, ∼ 0.2 Hz, we therefore down-sampled to the sample frequency of FPI. The 
data used is level-2 data, which is post-processed on Earth and would not be 
available onboard the spacecraft. 

The dayside ROI in Table 1 are taken from Raptis et al. [ 14] and are tran-
sient phenomena upstream of the bow shock in the ion foreshock region, which 
are known to energize particles and cause space weather effects [ 18]. Therefore, 
finding these, even in level-2 data, is important for further scientific research. In 
addition to these transient events, the data intervals also contain other phenom-
ena, such as bow shock and magnetopause crossings, which are operationally 
critical to identify automatically. 

We have used two nightside data intervals from MMS-1, listed in Table 1, to  
evaluate how the algorithm generalizes to different regions. These are intervals 
from the nightside magnetosphere of Earth, containing two events analyzed by 
Richard et al. [ 15]. These are fast plasma flows associated with geomagnetic 
disturbances and can, therefore, cause space weather effects [ 19,20]. 

THEMIS spacecraft is used as an alternative source of space plasma data 
with different instruments compared to MMS. In particular, we use THEMIS-C 
probe measurements of the ion energy flux and ion velocity from the Electrostatic 
Analyzer (ESA), these are measurements with minimal processing, which are 
readily available for onboard algorithms [ 2,21]. The interval investigated is from 
2008-07-15 and contains a foreshock transient [ 22]. 

Multiple Features: The PCA method finds the axis with the highest variance; 
therefore, for PCA to be effective, all features must be normalized to the same 
range. When PCA is used in data with one type of feature, for example, the 
omnidirectional ion spectrum used in this paper, the values of all features can 
be expected to have the same magnitude. However, if multi-feature types are 
included, these new features can have values with magnitudes that differ sig-
nificantly. Then, the feature types with the highest magnitudes will dominate 
the PCA. This can be seen in the leftmost plot of Fig. 2, where Ion spectrum 
channels 19 to 21 have the highest variance, while the B-field variance is not 
visible. A common way to solve this issue is to scale the features, for example, 
MinMax scaling, which scales each feature to be between zero and one. How-
ever, this destroys the relative variance within a feature type. This can be seen 
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Fig. 2. Comparison of the variance of the different features for no scaling (Left), Min-
Max scaling (Middle) and FC-MinMax scaling (Right). The features are MMS omni-
directional ion spectrum, channel 10 to 23 and B-field from 2017-12-17, 20:00 to 21:50, 
while MMS is traversing the magnetosheath region. 

in the middle plot of Fig. 2, where the highest variance for the ion spectrum 
data has now moved to channels 12 and 13. To solve this issue, we introduce a 
coupling between features of the same type when scaling. This Feature Coupled 
MinMax (FC-MinMax) scaling scales the coupled features to the same min and 
max values, which are calculated over the group of features of the same type. 

The variance after using the FC-MinMax scaling can be seen in the rightmost 
plot of Fig. 2. Here, the relative variance within each group, ion spectrum and 
B-field are retained while scaling the features to have the same magnitude. We 
can now see that the B-field, together with the ion spectrum, will affect the PCA. 
In our tests, we have used data interval 0 from Table 1 to calculate the scaling 
for each feature group when testing the data from the MMS dayside intervals. 
For other data, we have calculated the scaling based on the specific data. 

4 Results 

Figure 3 shows the outlier detection algorithm performance when applied to a 
single time-series of MMS data. The features used are the ion omnidirectional 
spectrum, the B-field and the ion velocities. Each feature is scaled using the FC-
MinMax scaling with the scaling factors calculated on data interval 0, see Table 1. 
The bottom three plots describe the functionality of the algorithm. Samples with 
the flag ‘outlier’ or ‘calibration’ are outlier samples. However, samples with the 
flag ‘calibration’ are used to update the PCA model. 

The initialization stage can be seen furthest to the left in the plot; here, 
there are no outlier detections and the flag is set to ‘Calibrating’. Following this, 
we can see how the reconstruction error and detection threshold are updated as 
more samples are ingested. At 01:50, the algorithm detects ROI from Table 1. 
The next region of interest in the data is the bow shock crossing at 03:22, where 
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Fig. 3. Algorithm applied to multi-feature data from MMS dayside interval 2, the 
primary ROI is marked with dashed lines, Sc = 25, Sm = 150, Lo = 10  and  λ = 4.  
The bottom plot is the principal component (PC) at each time; ion spectrum channels 
0–10 and 23–31 have values close to zero and are not shown. 

the spacecraft enters the magnetosheath. The algorithm detects the crossing by 
the sudden increase in the reconstruction error. However, as the error does not 
decrease below the threshold of 35 samples (Lo + Sc), the entry triggers a cali-
bration for the new region, which is shown by the samples labeled ‘Calibration’. 
After the calibration, the error decreases below the threshold. One more cali-
bration is triggered at the short entry into the magnetosphere region at around 
05:40 after a magnetopause crossing. Both of these crossings highlight different 
physical dynamics and their automatic finding can facilitate scientific research. 

The bottom panel in Fig. 3 shows how each feature affects the principal com-
ponent, inversely, this also shows which feature affects the reconstruction error 
the most. We can see there that in the solar wind region, the PCA model is dom-
inated by the ion spectrum channels 17 and 18, while after entering the magne-
tosheath, multiple spectrum channels, together with the B-field and velocities, 
affect the model, where the Vx feature is now dominant. 

Optimal Parameters: As mentioned in Sect. 3.1, five parameters control the 
algorithm. We have performed a rudimentary parameter optimization on the set 
of dayside data intervals from Table 1, maximizing the detection of the listed 
ROIs. For this data, with the feature types, ion spectrum, B-field and ion veloc-
ities, we have found that setting the parameters as Sc = 25, N = 2,  Sm = 150, 
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Fig. 4. Example of a ROI (dashed lines) the algorithm showed no detection. 

λ = 5  and  Lo = 10, balances finding the ROIs with false detections. With these 
parameters, the algorithm can find eleven out of the twelve dayside ROI specified 
in Table 1 when all the data intervals are fed in sequence to the algorithm with-
out restarting it between intervals. However, the time shift between the intervals 
also introduces an artificial shift in the reconstruction error. When this shift is 
towards a larger error, the algorithm over-calibrates to the region at the start of 
the new interval, which can help it detect the primary ROIs. For a more realistic 
analysis, the mean buffer was reset to the first two samples when entering each 
new data interval. With these settings, most of the samples are marked as either 
‘No Activity’ or ‘Outlier’, 98.7% and 1.1% respectively, only 0.2% are used to 
update the model. 

The detection result for data interval 7 is plotted in Fig. 4. Here, the algorithm 
is missing the primary ROI. However, it does find the two crossings into and out 
of the magnetosheath at 11:19 and 11:39. The following quick crossing in and 
out of the magnetosheath, at 11:43 to 11:44, is, however, missed due to the 
sudden drop in reconstruction error from the first exit causing an increase in 
the standard deviation and thereby in the error threshold. If the ion spectrum is 
removed from the feature space, thereby only using the velocities and B-field, the 
marked ROI is found. All the crossings above are also found. However, multiple 
recalibrations are triggered at the entry to the magnetosheath. 

MMS-1 Nightside Data: When applying the algorithm to the nightside data 
from Table 1, it can find the ROI at 2021-08-15 01:23 from the 12th data interval 
but not the ROI from the 11th interval. However, by increasing the number of 
PCAs to three and lowering the threshold to 3.5, the algorithm can find both 
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Fig. 5. The algorithm applied to MMS Nightside data interval 11 from Table 1. 

regions. Here, the FC-MinMax scaling is calculated on the same data interval 
as the algorithm is applied. If scaling is instead calculated on dayside interval 
0, the algorithm will over-calibrate to the ion velocities, as these have a larger 
value range in parts of the nightside data (Fig. 5). 

Fig. 6. The algorithm applied to an interval of dayside data from THEMIS C. 

THEMIS C Dayside Data: Applying the algorithm to THEMIS C intervals, 
with a scaling calculated on the same interval, we find several possible interesting 
events; The longest of these is between 20:01:51 to 20:04:36 and 21:57:44 to 
21:58:08. This second event starting at 21:57:44 has been noted in previous 
works as a foreshock bubble [ 22,23]. The start and stop times indicated by our 
algorithm also correspond well to the start of expansion to end of compression, 
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shown by Liu et al. [ 22] in Fig. 2. For this data, the calibration batch and mean 
window size have been increased to 30 and 180 due to the higher sampling 
frequency of the THEMIS C data. 

For the full day, 2008-07-15, the first twelve hours of the data have values 
with significantly smaller magnitudes than the region in Fig. 6. When applying 
the algorithm to this wider data interval, with a scaling calculated on the full 
interval, the algorithm detects the start of the new region but does not trigger 
a recalibration. Lowering the threshold to 3.5 causes the algorithm to more 
aggressively recalibrate during the transition and find the events in Fig. 6. 

5 Related Work 

Plasma Region and Bow Shock Identification: In the area of space plasma 
physics, bow shock crossings, which are coupled with the transition between the 
solar wind region and the magnetosheath are areas of active research. There 
have been numerous works developing methods for identifying plasma regions 
(e.g., solar wind and magnetosheath) and their transitions (e.g., bow shock). 
Both Olshevsky et al. [ 24] and Breuillard et al. [ 25] utilized neural-network-
based approaches to identify different plasma regions. The bow shock transitions 
are either identified by where network output indicates a high probability for 
neighboring regions [ 24] or as specific labels [ 25]. These approaches are powerful 
and displayed high accuracies on the test sets. However, as the methods rely on 
having a training dataset, they cannot adapt to changing input data. While the 
algorithm presented in this paper can benefit from samples of relevant regions 
to create an initial model, the algorithm does not require a training set. Instead, 
it can be applied directly and will adapt to new data. 

More recent work by Toy-Edens et al. [ 7] utilized a Gaussian Mixture Model 
to classify the MMS dayside region, which displayed high accuracy using a 
method more lightweight than a full neural network. Bakrania et al. [ 10] used  
a pipeline of autoencoder, PCA and Agglomerative Clustering to classify data 
from the ESA’s Cluster spacecraft [ 26]. Innocenti et al. [ 12] utilizes PCA, self-
organizing maps and K-means clustering to process multiple different quantities, 
such as B-field, particle velocity and particle density, to obtain a classification 
of the plasma region. 

PCA-Based Outlier Detection. The two-step approach, presented by Finley 
et al. [ 9], analyzes a region of MMS data for interesting events by subdividing 
the region into smaller windows and performing a PCA on the resulting matrix 
of subregions. Then, a One-Classifier support vector machine (OCSVN) is used 
to find the windows containing outliers. This technique shows promising results; 
however, it is very computationally expensive, as the PCA and OCSVN have to 
be recomputed for each analyzed region. Zamry et al. [ 6] utilizes a PCA feature 
reduction coupled with a One-Class Support Vector Machine to detect anoma-
lous sensor readings in data from a Wireless Sensor Network. Bhushan et al. [ 13] 
applied an Incremental PCA on streaming data with geospatial spread. They 
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only consider finding outliers in one type of feature from one sensor type and the 
outliers are artificially introduced into the data. Furthermore, the PCA model 
is constantly updated, increasing the computational complexity. The algorithm 
presented in this paper limits the computational complexity by only updating 
the PCA model when necessary. 

6 Discussion and Conclusion 

In this work, we have presented a lightweight outlier detection algorithm for 
streaming multi-feature data. The algorithm can adapt to new data regions, 
enabling its deployment in applications where all the data regions are not known 
or fully understood. We utilize the Incremental PCA to have a lightweight algo-
rithm that could be deployed on low-performing hardware. However, the basic 
principles in the algorithm can be applied using other unsupervised feature 
reduction techniques, where a reconstruction error can be calculated, for exam-
ple, with autoencoders. Furthermore, while we have demonstrated the algorithm 
using space mission data, it can also be used to analyze other types of streaming 
data, such as measurements from a weather monitoring station. This will have 
to be evaluated for the specific data in question. 

With optimal parameters, the algorithm can find most dayside ROIs, together 
with several crossings from solar wind and ion foreshock to the magnetosheath. 
For the nightside data, the number of components needed to be increased and the 
threshold slightly lowered. If we compare where our primary ROI is located in 
the dayside data to where it is located in the nightside data, we can understand 
why. In the dayside data, the ROIs are located in the Solar Wind/Ion foreshock 
regions, where the ion spectrum mainly consists of a tight beam of energy, as we 
can see in Fig. 3. This region is well-defined by only two parameters and outliers 
are visible in the reconstruction error. The nightside data is more varied around 
the marked ROI, leading to the ROI being masked by other errors. By increasing 
the number of components, the model can better describe the structure of the 
data, allowing the ROI to be found. This result indicates that the algorithm 
can also be used as a data mining tool to find interesting events in the dayside 
and nightside regions of the Earth’s magnetosphere. This can help scientists find 
events for further studies. However, the different parts of the nightside can vary 
significantly and further studies will be necessary to understand how well the 
algorithm performs on data from the nightside region. 

The algorithm can also be used on data from different spacecraft, as demon-
strated by the use of THEMIS C data. In this case, the data used would be 
available onboard the spacecraft, indicating the algorithm’s potential to be used 
onboard to inform the decision on which data to prioritize for downlink. In a real 
mission scenario, the algorithm would be applied to data which has already been 
subjected to a robust onboard pre-processing check for sensor failures. However, 
the algorithm needs to be more extensively tested using data available onboard, 
from multiple spacecraft, to show that the principle is robust enough for use 
in future space missions. Furthermore, the algorithm has to be evaluated on 
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representative hardware before it can be used onboard during a space mission. 
Therefore, future work will focus on the creation and evaluation of a version of 
the algorithm optimized for low-performing hardware. 

The FC-MinMax scaling used to scale the different feature types enables 
the use of multiple feature types with different magnitudes. It also opens up 
the possibility of adding a feature selection by weighing the different feature 
types differently. However, the necessity of this pre-scaling step is one of the 
two main weaknesses of the current algorithm, the second is how the threshold 
is defined. To further advance the algorithm, we will focus on this pre-scaling 
step and evaluate ways to integrate it into the algorithm itself. It would then be 
calibrated at the same time as the algorithm in the initialization stage. During 
a recalibration, the new data can be checked against the existing scaler to see if 
it needs to be updated. However, this could mean that the PCA model has to 
be recalculated and not just updated using the new samples. 

For the second weakness, the main issue is that defining the threshold using 
the standard deviation can lead to large thresholds when there are large decreases 
in the reconstruction error, as seen in Fig. 4. This can lead to missed detections 
of interesting events. Furthermore, an incorrectly selected threshold can lead to 
excessive recalibration of the algorithm. To address these issues, the threshold 
could be dynamically updated either continuously or during calibration. Another 
option to limit excessive recalibration could be to introduce a forgetting factor 
to the IncrementalPCA. This would decrease the importance of earlier data and 
allow the new data to be more prominent in the model [ 11]. 

The algorithm presented in this paper is a promising approach to finding out-
liers in multi-feature data. It highlights areas of interest for further investigation 
and can inform decisions on which data should be prioritized for downlink. To 
further prioritize the data, the algorithm’s output can be evaluated for the num-
ber of sequential outliers and the height of the error signal above the threshold. 
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