Processing Solar Images to forecast Coronal Mass
Ejections using Artificial Intelligence
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Figure 1: Images of the Sun showing a halo CME on 20/6/2015. Figure CMEs and its classification between halo and non-halo. Module s
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For the implementation of CNNs we used as backend .

the TensorFlow library (https://www.tensorflow.org)
Figure 2: Neural Network (NN) and visualization of back propagation. and the Keras API (htt: S. / / ketras.i0 )
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Figure 3: [Left]: Visualization of Convolution layer. [Right| Visualization of Max
pooling/Subsampling layer. Figure courtesy: Cambridge Spark Ltd

In our case, the task is the prediction of CMEs and COﬂClUSion & DiSCUSSion

their classification as halo and non-halo.

* A promising result was obtained for the prediction and the classification of CMEs as described by CACTUS and
LASCO catalogs using Artificial Intelligence techniques. In specific, 76.6% prediction and 83.5% classification
between halo and non-halo CME.

* A new tool was developed that may be a valuable asset in analyzing and predicting solar related phenomena
(CMEs, Sunspots, Solar Flares etc.)
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Figure 4: Visualization of CNN used to classify the number “1”. Figure Courtesy:
Suhyun Kim, iSystems Design Lab.
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