VETENSKAP OCH KONST

Quasi – parallel & Quasi – perpendicular Magnetosheath Jets Using MMS

Savvas Raptis, Tomas Karlsson & Per-Arne Lindqvist

KTH - Department of Space and Plasma Physics

EGU 2019 12/04/2019, Vienna

Introduction

Magnetosheath Jets

What: Enhancements of dynamic pressure above the general fluctuations level

Where: Magnetosheath

Data: MMS (Magnetospheric Multiscale Mission)

Why: Interaction of SW & Magnetosphere, magnetopause reconnection, radiation belts, auroral features...

Palmroth Minna et al. (2018)

Motivation – Main Subcategories

Jets are found mainly in Quasi-parallel shock $(\theta_n < 45^\circ)$. However, fluctuations also found in Quasi Perpendicular regions.

Q _{par}	Q _{per}	Boundary

L. B. Wilson (2016)

Bow Shock

How Jet look like – Quasi Parallel

How Jet look like – Quasi Perpendicular

Low *B* Variance, Low Energetic Particles, High Anisotropy

See the differences?

Low Variance, No Energetic Particles, High Anisotropy

EGU 2019, Vienna

Quasi-parallel & Quasi-perpendicular Magnetosheath Jets Using MMS

Angle & Bow shock configuration

Why not directly θ_n from Solar wind data ?

- Worse availability
- Error in propagating to Bow shock

Angle & Bow shock Verification 10⁴ log Diff. energy flux keV/(cm² s sr keV) W_i (eV) 10³ 6 10² 5 80 5 OMNI ⊖ (deg) 60 40 $\Theta_{\rm cone}$ 20 80 60 B_{GSE,MMS} (nT) 40 20 -20 B_{ix}B_{iy}B_{iz}|B| -40 10 win = 60 s B_{GSE,OMNI} (nT) 5 0 -5 B_{ix}B_{iy}B_{iz}|B| -10 13:30 14:00 14:30 15:00

Quasi-parallel & Quasi-perpendicular Magnetosheath Jets Using MMS

2015-11-04 UTC

Main Categories

Results

Classification in progress!

Classification in progress!

Classification in progress!

Updated database for Jets: 11/2015 – 01/2019

<u>Jets</u>	$\frac{\text{Dow}}{dt}$	<u>vnsampled</u> < 60 (<i>s</i>)		$\frac{\text{High Energetic}}{F_{kin} > 1 (nJ \cdot m^{-3})}$	
15477	,	7957		4082	
$Q_{par} st st$	$Q_{perp} \ *$	Boundar †	у	Encapsulated †	
2201	506	725		105	

* Including all quality levels, 2 adaptive schemes and up to 5 tries.† Including all quality levels, 4 adaptive schemes and up to 15 tries.

Where are they?

Duration of each jet

Characteristics of Qpar – Qperp – Boundary

*Diff = $X - \langle X \rangle_{10min}$

20

Characteristics of Qpar – Qperp – Encapsulated

Mechanisms ideas for each jets

Encapsulated Jet – Idea proposed

Conclusion

<u>Summary</u>

- Obtained a vast database of Magnetosheath Jets (~10.000) using all available MMS data.
- Successfully classified jets into several different categories showing different attributes.
- Analyzed their characteristics and found interesting similarities & differences compared to earlier results.
- Proposed a different generation mechanism for each jet class that was found.

Future Work

- Quantify true negative and false positive situations for all classes derived from classification scheme.
- Apply machine learning techniques to predict our classification scheme with other data.
- Investigate more quantities $(\beta, \theta_v, \theta_B, f(e), ...)$.
- Confirm the connection of each category to a generation mechanism.

Extras

Characteristics of Qpar – Qperp – Boundary

Characteristics of Qpar – Qperp – Boundary

Quantity Analyzed: X - X mean, 10min

Characteristics of Qpar – Qperp – Encapsulated

Quasi-parallel & Quasi-perpendicular Magnetosheath Jets Using MMS

Characteristics of Qpar – Qperp – Encapsulated

Quantity Analyzed: X - X mean,10min

Quasi-parallel & Quasi-perpendicular Magnetosheath Jets Using MMS

"Extra" Categories

<u>Stages</u>

(1) Pre-jet-post

Categories

- 1. Quasi Par.
- 2. Quasi Perp.
- 3. Boundary
- 4. Encapsulated
- 5. Unknown

Quality Check

- Criteria Number
 - Level I III

<u>Stages</u>

(1) Pre-jet-post

(2) Adjust times & Values

(a) Jet Period

(b) Pre/post Period

<u>Categories</u>

- 1. Quasi Par.
- 2. Quasi Perp.
- 3. Boundary
- 4. Encapsulated
- 5. Unknown

Quality Check

Criteria Number
Level I – III

Tries Required

1-5 / stage

<u>Stages</u>

(1) Pre-jet-post

(2) Adjust times & Values

(a) Jet Period

(b) Pre/post Period

Categories

- 1. Quasi Par.
- 2. Quasi Perp.

3. Boundary

- 4. Encapsulated
- 5. Unknown

Quality Check

Criteria Number
Level I – III

Tries Required

1 – 5 / stage

<u>Stages</u>

(1) Pre-jet-post

(2) Adjust times & Values

(a) Jet Period

(b) Pre/post Period

(3) Normalizing

Categories

- 1. Quasi Par.
- 2. Quasi Perp.

3. Boundary

- 4. Encapsulated
- 5. Unknown

Quality Check

Criteria Number
Level I – III

Tries Required

1-5 / stage

EGU 2019, Vienna

Searching for Jets

Quasi-parallel & Quasi-perpendicular Magnetosheath Jets Using MMS

EGU 2019, Vienna