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Neural Networks

Neural Network (NN) is a specialized machine learning algorithm
“trained” to perform a specific task. The training iIs being done by
Introducing numerous data several times to the NN and by then
optimizing the NN’s parameters according to these examples (“back
propagation”). The basic idea behind neural networks is that after
parametrizing a network to classify known data, the network can be
used to perform tasks on some new unknown given information.
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Convolution Neural Network (CNN) Is an advanced neural
network that works ideally when dealing with images. It consists of
different layers and parameters that try to obtain features originating
from the input images in order to perform a specific task.
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For problems with Inputs of higher dimensions (e.g. images), one
can combine the traditional neural networks along with convolution
and subsampling layer to create a CNN.
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Feature extraction Classification

In this work, we look at three different applications of deep
learning, featuring both regression and classification tasks.

Predicting Geomagnetic Index

Find value of DST index using past solar wind measurements
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Dst index Is used to show the difference between the perturbed and
the unperturbed geomagnetic field. A value of zero means that there
IS no disturbance, while negative values indicate phenomena ranging
from sub-storms to super geomagnetic storms.

In this work, we are using solar wind data from the ACE space
mission, in order to solve the “regression problem” of predicting the
time-series of Dst index using a deep neural network.
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Result: Cross validation, Mean Square Error: -0.04 (0.01)

For better results and longer predictions times one can use:
 LSTM (Long short-term memory) neural networks
 Extra input features by using GPS data.

Machine learning techniques have been proven to be extremely useful with various tasks, in many different fields. In the last few years, they have been introduced to space and solar physics and already achieved very
promising results. Although, these techniques might not replace human’s physical understanding, they can aid us In creating more accurate models and investigate patterns, previously considered to be too complex to

study.

Forecasting CMEs

Forecast the emerged CMEs using solar images taken from SDO and CNN
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By applying a CNN and images from SDO, we tackle this
“forecasting classification problem”, predicting the automatic
CACTUS catalog and classifying Halo-CMEs of the manually
derived LASCO.

Date Characteristics

2014/01/02 13:48:06 184 57 894 959 825 711
2014/01/03 00:24:05 264 18 225 272 169 0
2014/01/03 02:24:06 51 24 657 637 674 720
2014/01/03 03:47:08 6l 44 1132 1303 9e1 965
2014/01/03 07:36:05 62 17 250 193 306 €15
2014/01/03 10:36:05 €S 21 316 273 358 627
2014/01/03 12:36:05 265 25 277 287 267 34
2014/01/03 18:00:06 154 €0 208 114 295 430
2014/01/03 18:48:05 90 31 89 179 0 0
2014/01/03 19:36:05 222 112 286 331 237 0
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Conclusion

Find class of magnetosheath jet found by MMS using solar wind data

Input Output
Solar Wind Data (OMNIweb — Bow Shock) Magnetosheath Jet Class (MMS)
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Magnetosheath jets are enhancements of dynamic pressure above
the general fluctuations level and they are a key component to the
coupling between solar wind and the magnetosphere.

With a neural network, we classify the jets measured by MMS using
solar wind data, therefore confirming a connection between the
particle populations before and after bow shock interaction.
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