

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

K

VETENSKAP

OCH KONST

sparc

Savvas Raptis¹, S. Aminalragia-Giamini², Tomas Karlsson¹ & Per-Arne Lindqvist¹

¹Space and Plasma Physics, School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Sweden

²Space Applications & Research Consultancy (SPARC), Greece

Amsterdam, 18/9/2019

Introduction

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Magnetosheath Jets

Where: Magnetosheath

What: Enhancements of dynamic pressure above the general fluctuation level

How: MMS (Magnetosheath) – OMNIweb database (Solar Wind)

Why: Interaction of SW & Magnetosphere, magnetopause reconnection, radiation belts, auroral features...

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Classes of Magnetosheath Jets

Jets are found mainly in quasi-parallel shock $(\theta_n < 45^\circ)$. However, fluctuations also found in quasi-perpendicular regions.

L. B. Wilson (2016)

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Quasi-parallel jet using MMS

High *B* Variance, High Energetic Particles, Low Anisotropy

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Quasi-perpendicular jet using MMS

Low *B* Variance, Low Energetic Particles, High Anisotropy

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Differences of each class

Low Variance, No Energetic Particles, High Anisotropy

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Main Categories

Raptis S., et al. 2019 (In progress)

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Main Categories

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Motivation

Main Goal

Find class of magnetosheath jet found by MMS using OMNIweb SW data

Output Jet list

Subset	Number	Percentage $(\%)$	15 Q_{par} Jets Q_{par} Jets
Quasi-parallel	2284	26.9	$10 \begin{array}{ c c c c } & & & & & & & \\ 10 & & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & & \\ 10 & & & $
Certain	860	10.1	Mangetopaus
Quasi-perpendicular	504	5.9	
Certain	211	2.5	
Boundary	744	8.8	
Certain	154	1.8	
Encapsulated	77	0.9	
Certain	57	0.7	-5
Other	4890	57.5	
Unclassified	3499	41.2	-10
Border	1346	15.8	×× ×
Data Gap	45	0.5	-15 0 5 10 15
			${ m X}(R_E)$

Table 3. Classified dataset of the magnetosheath jets for the period 10/2015 - 04/2019.

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Input (Solar Wind)

13

• Solar Wind at
$$t_0 = t_{MMS}$$

- Mean Solar Wind $(t_0 10, t_0 + 5)$
- Mean Solar Wind $(t_0 5, t_0)$
- Max Solar Wind $(t_0 5, t_0)$

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data Machine Learning in Heliophysics Amsterdam, 18/09/2019

Х

Why Connect SW to jets?

Associate Solar Wind parameters and Jets (SW → MSH)	Assist initial classification based on SW conditions	Work towards jet prediction & generation mechanism
<u>Known</u> Mach Number = Increased Frequency	$\begin{array}{c cccc} Other & 4890 & 57.5 \\ Unclassified & 3499 & 41.2 \\ Border & 1346 & 15.8 \\ Data Gap & 45 & 0.5 \\ \end{array}$	<u>Prediction of Jets</u> Probabilities of jet occurrence, total dynamic pressure, etc.
<u>To be determined</u> Temperature Absolute Magnetic Field Density Velocity Electric Field Plasma beta	Provide percentages for unclassified jets	<u>Generation Mechanism</u> Bow shock ripples ? IMF discontinuities ?

Method

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Neural Networks & Backpropagation

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

A Trained Neural Network

*Video Courtesy: **3Blue1Brown** (Check him on YouTube!)

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Schematic of Procedure

Results

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Best parameters

Neural Network Parameters

Training – Test set: 80 – 20%

Optimizer: Nadam

Activation Function: (P)ReLu, Softmax

Extra: Batch Normalization, Class Weight

Input Evaluation

Most important:

Alfvenic Mach Number Magnetosonic Mach Number Temperature Beta parameter Velocity Density

Results – Example

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Results – Example

Results – Example

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Results – Classification Accuracies

Work in progress ...

Conclusion

Summary

- Investigated different solar wind parameters and found the best combination for jet classification.
- Successfully classified part of the jets from our initial dataset with accuracy 80 96%
- Provided support to initial dataset from achieving a classification using different satellite data.

Future Work

- Add more categories of jets from the initial dataset (e.g. "boundary" Jets : Associated with IMF rotation)
- Try to classify unknown jets that could not be determined using initial algorithm.
- Revaluate classification based on the results.
- Work towards finding the dominant features of SW for jet phenomena and prediction.

Extra

Classification of Magnetosheath Jets using Neural Networks and High Resolution OMNI (HRO) data

Mechanisms ideas for each jets

