

Fast Plasma Flows Downstream of the Bow Shock Using MMS: Correlations and Generation Mechanisms

Savvas Raptis¹, Tomas Karlsson¹, Ferdinand Plaschke², Anita Kullen¹, P-A. Lindqvist¹

¹Division of Space and Plasma Physics, KTH Royal Institute of Technology, Sweden ²Space Research Institute, Austrian Academy of Sciences, Graz, Austria

This work has been supported by Hellenic Astronomical Society (https://helas.gr)

Introduction

Magnetosheath Jets

Definition

Magnetosheath jets are transient localized enhancements of dynamic pressure (density and/or velocity increase)

e.g. 100% dynamic pressure enhancement compared to background magnetosheath

Related phenomena

ULF wave excitation Radiation belts Aurora Magnetopause reconnection Magetopause penetration Shock acceleration Magnetopause surface eigenmodes

Plaschke F. et al. (2018); sketch by H. Hietala | Space Sci. Rev

Motivation – Shock configuration and Jets

L. B. Wilson (2016) | Geophysical Monograph Series

Vuorinen, et al. (2019) | Annales

Some Possible Generation Mechanisms

5

Database generation & jet classes

Different Classes

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers Kajdic P., Raptis S., et al. (2021) | GRL (under review)

Fast/Survey MMS data	Burst MMS data
Resolution (samples/s)FGM (magnetic field):0.0625FPI (plasma moments ions):4.5EDP(electric field):0.0313	Resolution (samples/s) 0.0078 0.15 0.00012218
 Pros ✓ Always available ✓ Decent resolution ✓ Can be good for statistics due to availability 	 ✓ Very high resolution ✓ Able to resolve structures close to boundary surfaces (e.g. mix of plasma close to magnetopause, bow shock, foreshock etc.)
Cons	Cons
 Not suitable for small scale studies especially these related to ion moments Could be misleading close to boundary surfaces (Magnetopause, Bow shock etc.) due to very similar observational signatures 	 Not available all the time, mostly available close to vital mission objectives (magnetopause, diffusion regions, shock transitions etc.) Hard to do proper large scale statistics due to biases generated from specific availability and manual choice of intervals

More information: Baker, et al. (2016) | Space Sci Rev 19

Jets database of MMS

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers Palmroth M., Raptis S., et al. (2021) | Annales

Raptis, Karlsson, et al. | Ongoing

EGU 2021

Statistical Results

Close to the Bow shock statistics (fast data) - Ripples

Close to the Bow shock statistics (fast data) - SLAMS

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Case Studies / Examples

Example 1 (fast data): close to the bow shock jet

Basic Properties

- Dynamic pressure enhancement
- •

log Diff. energy flux keV/(cm² s sr keV)

6

5

- Velocity enhancement ($\Delta |v| > 0$)
- Magnetic field enhancement ($\Delta|B|>0$)
- Density enhancement (Δ n>0)
- Colder population shown in ion energy spectrum
- Less heated plasma ($\Delta T < 0$)
- Close proximity to BS ($\Delta t < 5$ min)

Yellow area = estimated magnetosheath background Dotted black line = estimated bow shock crossing

Example 2 (burst data): Close to the Bow shock jet

Multi point measurements (MMS 1 - 4)

С

 ∇

Raptis, Karlsson, et al. | Ongoing

16

٥

Savvas Raptis - Magnetosheath Fast Plasma Flows using MMS

The structure is moving towards the Earth

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Summary & Conclusion

Main points

- The statistics seem to support SLAMS penetration and bow shock ripple mechanism
- However, fast (*maybe even burst sometimes) data can be misleading close to the bow shock. One can confuse jets with foreshock, bow shock oscillation etc.
- The case studies show similar results to statistics but also showed some false positive events that require more work.

Future work

- Review each case with burst data to determine if structures are convective (jets) or nested (shock oscillation / foreshock excursions etc.)
- Quantify relationship between observed parameters and compute the likelihood of each generation mechanism.

This work has been supported by Hellenic Astronomical Society (https://helas.gr)