

Magnetosheath Jets Close to the Bow Shock: Generation Mechanisms Using MMS

Savvas Raptis¹, Tomas Karlsson¹, and collaborators

¹Division of Space and Plasma Physics, KTH Royal Institute of Technology, Sweden

Introduction

Magnetosheath Jets

Definition

Magnetosheath jets are transient localized enhancements of dynamic pressure (density and/or velocity increase)

e.g. 200% dynamic pressure enhancement compared to background magnetosheath

Related phenomena

Radiation belts Aurora Magnetopause reconnection Magnetopause penetration Shock acceleration Magnetopause surface eigenmodes ULF waves (see Christos' talk few minutes ago)

Plaschke F. et al. (2018); sketch by H. Hietala | Space Sci. Rev

Shock, Magnetosheath & Jet classification

Raptis, Karlsson, et al. (2020) | JGR Raptis, Aminalragia-Giamini et al. (2020) | Front. Astron. Space Sci Palmroth M., Raptis S., et al. (2021) | ANGEO Kajdič, Raptis et al. (2021) | GRL Karlsson, Raptis, et al. (2021) | JGR - Under Review Raptis, et al. (2021b) | Ongoing

4

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Latest Results (to be submitted)

Downstream Super-magnetosonic Plasma Jet Generation as a Direct Consequence of Shock Reformation

> Savvas Rapitis^{1*}, Tomas Karlsson¹, Andris Vaivads¹, Craig Pollock², Ferdinand Plaschke³, Andreas Johlander^{4,5}, Henriette Trollvik¹, Per-Arne Lindqvist¹
> ¹ Division of Space and Plasma Physics - KTH Royal Institute of Technology, Stockholm, Sweden ² Denali Scientific, Fairbanks, AK, 99709, USA
> ³ Space Research Institute, Austrian Academy of Sciences, Graz, Austria ⁴ Department of Physics, University of Helsinki, Finland ⁵ Swedish institute of Space Physics, Uppsala, Sweden^{*}

How are these jets created ?

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Shock Reformation idea

Lembège and Savoini 2002

Schwartz, 1990

Results

Savvas Raptis - Magnetosheath Fast Plasma Flows using MMS

The 15th Hellenic Astronomical Conference

9

Savvas Raptis - Magnetosheath Fast Plasma Flows using MMS

Whole mechanism & physical picture

Whole mechanism & physical picture

Whole mechanism & physical picture

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS The 15th Hellenic Astronomical Conference

Summary & Conclusion

Main points

- In-situ observations of shock fronts (SLAMS) becoming "embedded plasmoids" (density enhanced downstream regions).
- **First** *in-situ* observations of jets generated by the dynamical evolution of collisionless shock (Reformation)

Implications

• Direct observations of jets generated as consequence of the dynamical evolution of shocks. Possibly a fundamental process of collisionless shocks that can be found everywhere in planetary, astrophysical and laboratory shocks.

Future work

- Simulation comparison (ongoing, already very supportive results from various groups)
- Statistical confirmation (need more events, currently 3 of very similar signatures)
- Further physical modeling (Can this process explain jets close to MP? How exactly are the dynamic evolution of this particular population change in time while they propagate?)

Extras

MMS spacecraft + String of Pearl Configuration

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Evolution of local shock front

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

2D reduced VDFs

Savvas Raptis - Magnetosheath Fast Plasma Flows using MMS

Turner et al. 2021 (local reformation/evolution)

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Jets Database

Jets database of MMS

Savvas Raptis – Magnetosheath Fast Plasma Flows using MMS

Fast/Survey MMS data	Burst MMS data
Resolution (samples/s)FGM (magnetic field):0.0625FPI (plasma moments ions):4.5EDP (electric field):0.0313	<u>Resolution (samples/s)</u> 0.0078 0.15 0.00012218
 Pros ✓ Always available ✓ Decent resolution ✓ Can be good for statistics due to availability 	 ✓ Very high resolution ✓ Able to resolve structures close to boundary surfaces (e.g. mix of plasma close to magnetopause, bow shock, foreshock etc.)
Cons	Cons
 Not suitable for small scale studies especially these related to ion moments Could be misleading close to boundary surfaces (Magnetopause, Bow shock etc.) due to very similar observational signatures 	 Not available all the time, mostly available close to vital mission objectives (magnetopause, diffusion regions, shock transitions etc.) Hard to do proper large scale statistics due to biases generated from specific availability and manual choice of intervals

More information: Baker, et al. (2016) | Space Sci Rev 19