

On the discrepancies of magnetosheath jet identification and statistical properties due to different temporal resolution and plasma moment derivation

Savvas Raptis

Division of Space and Plasma Physics KTH Royal Institute of Technology, Stockholm, Sweden

COSPAR 2022 – Athens, Greece 27/05/2022

On the discrepancies of magnetosheath jet identification and statistical properties due to different temporal resolution and plasma moment derivation & distribution functions

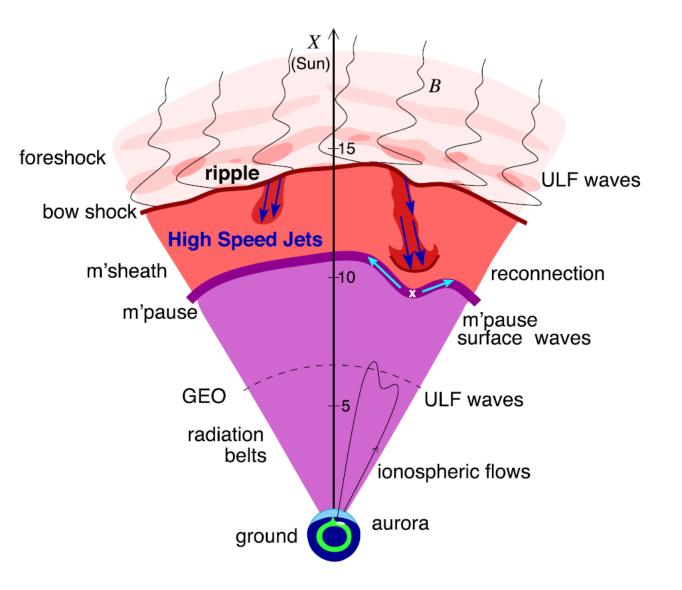
Savvas Raptis

Division of Space and Plasma Physics KTH Royal Institute of Technology, Stockholm, Sweden

COSPAR 2022 – Athens, Greece 27/05/2022

On the discrepancies of magnetosheath jet identification and statistical properties due to different temporal resolution and plasma moment derivation & distribution functions with MMS 🐲

Savvas Raptis


Division of Space and Plasma Physics KTH Royal Institute of Technology, Stockholm, Sweden

COSPAR 2022 – Athens, Greece 27/05/2022

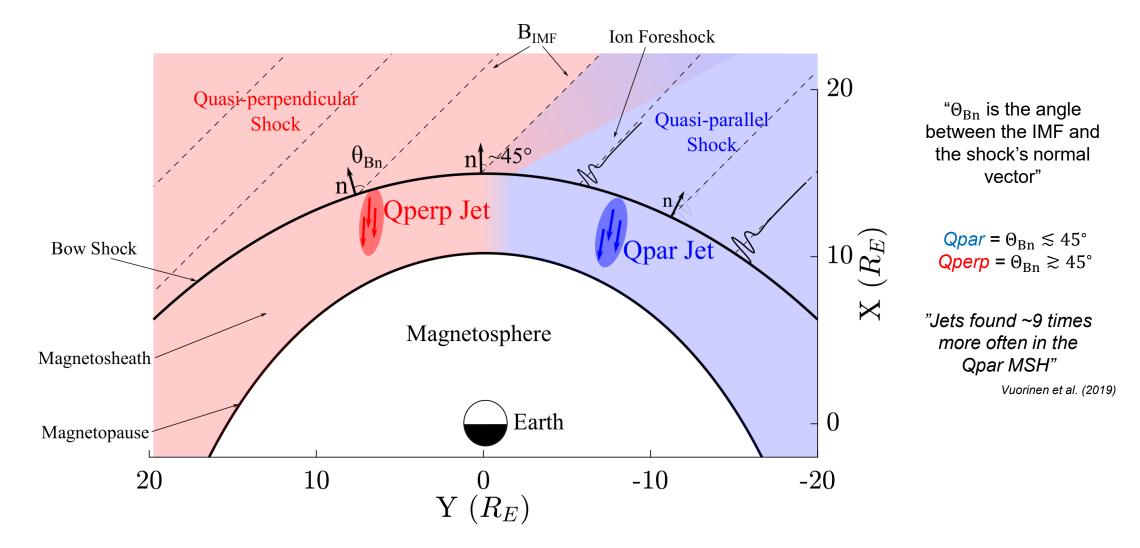
Introduction

Jets

Magnetosheath Jets – Definition

Definition

Magnetosheath jets are **transient localized enhancements** of **dynamic pressure** (density and/or velocity increase)


e.g., 200% dynamic pressure enhancement compared to background magnetosheath

Related phenomena

Radiation belts Throat aurora Magnetopause reconnection Magnetopause penetration Shock acceleration Magnetopause surface eigenmodes ULF waves

Plaschke F. et al. (2018); sketch by H. Hietala | Space Sci. Rev

Shock, Magnetosheath & Jet classification

Raptis, Karlsson, et al. (2020) | JGR Raptis, Aminalragia-Giamini et al. (2020) | Front. Astron. Space Sci Karlsson, Raptis et al. (2021) | JGR Kajdič, Raptis et al. (2021) | GRL

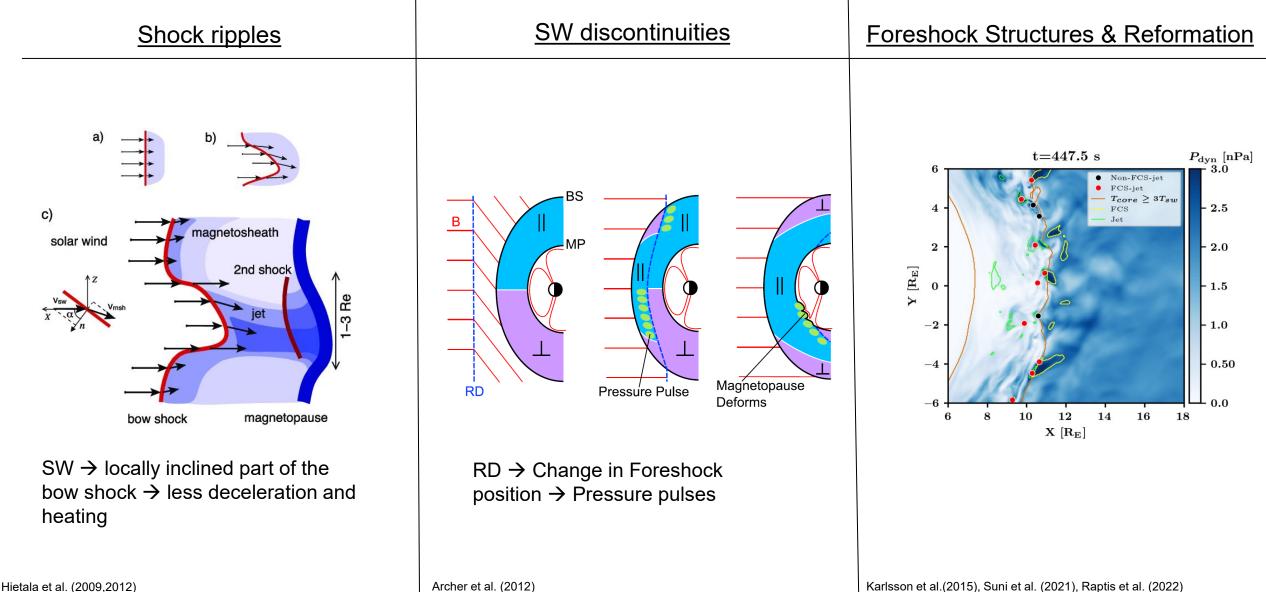
Summarized properties – Quasi Parallel

- Most common
- High dynamic pressure
- Primarily Earthward
- Associated with low temperature (ΔT)
- Associated with high |B| & ΔB
- High |B| variance
- Relevant to
 magnetospheric effects

Qpar Jet

Jets found in Q_{\parallel} MSH

20 P. dyn,MMS dyn,BG 2P dyn,BG P_{dyn} [nPa] 15 10 400 200 [km/s] >_ -200 v v v v -400 400 [s/w] -200 -200 PSD .≍ < 0 -200 -400 ຼຸ 150 ເອັີ 100 ເອີີ 50 150 50 50 **B**_{GSE} [nT] -50 600 e<_i⊤ 40 200 T_{par} M 10^{4} $\geq 10^3$ 6 ₽ 10^{2} 00:45 00:50 00:55 2015-11-30 UTC

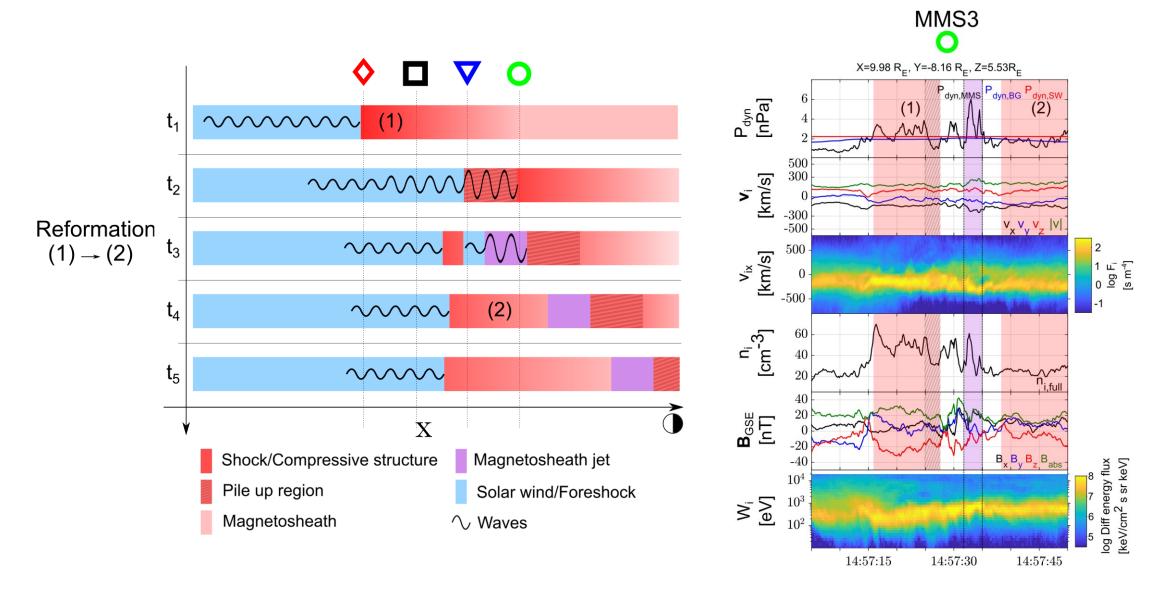

MMS 1: X=9.3 R_F, Y=-2.81 R_F, Z=-0.55R_F

Subset	Number	Percentage $(\%)$
Quasi-parallel	2458	26.7
Final cases	901	10.1
Quasi-perpendicular	542	5.9
Final cases	214	2.3
Boundary	781	8.5
Final cases	191	2.1
Encapsulated	80	0.9
Final cases	60	0.7
Other	5335	58.0
Unclassified/Uncertain	3789	41.2
Border	1500	16.3
Data Gap	46	0.5

Raptis S., Karlsson T., et al. (2020) | JGR

COSPAR 2022 – Athens, Greece | 19/07/22

How are these jets created (Qpar)?



8

Savvas Raptis – Plasma Jets & Particle Moments

COSPAR 2022 – Athens, Greece | 19/07/22

Shock Reformation & Magnetosheath Jets

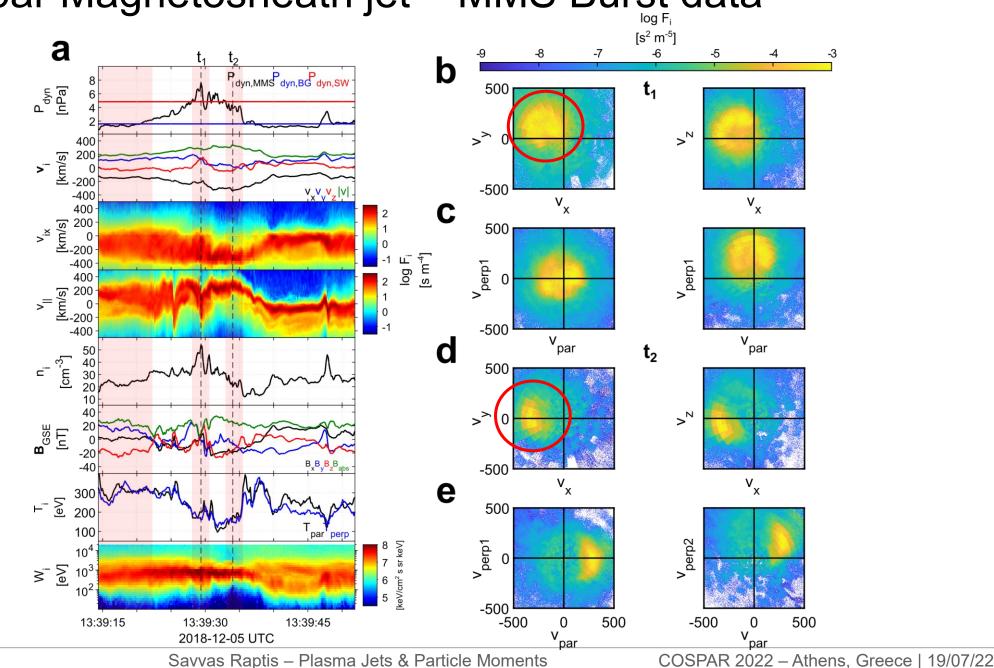
Raptis, S., Karlsson, T., Vaivads, A. et al. Downstream high-speed plasma jet generation as a direct consequence of shock reformation. *Nature Communications* 13, 598 (2022). https://doi.org/10.1038/s41467-022-28110-4

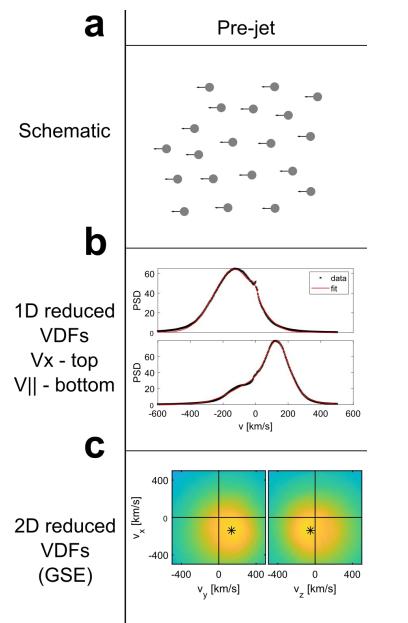
Results

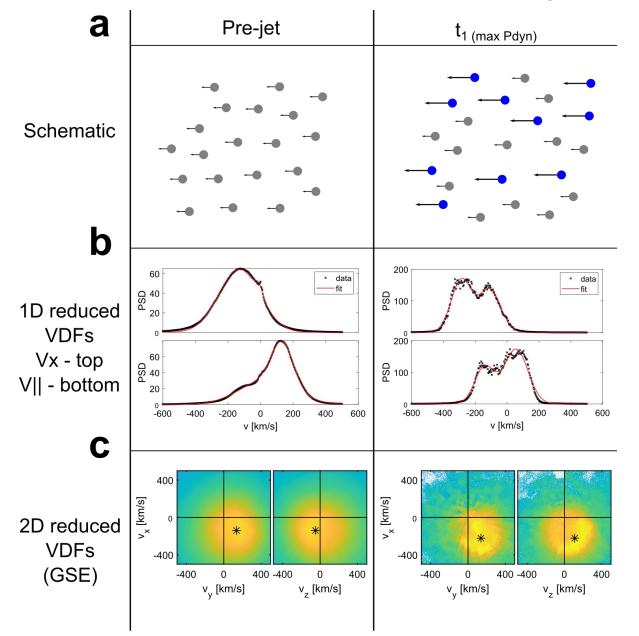
Raptis, Karlsson, et al,. 2022 | (Under Review)

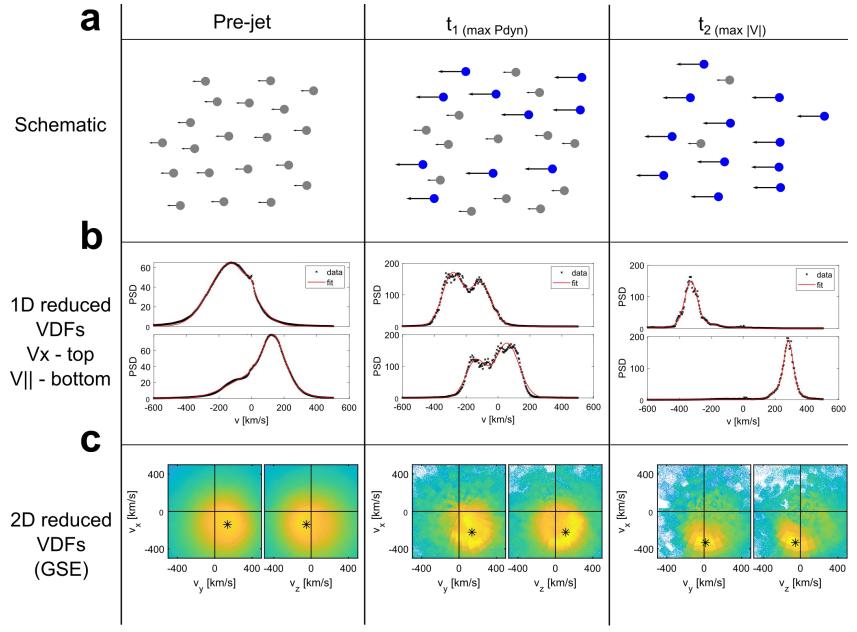
Qpar Magnetosheath jet – Fast data

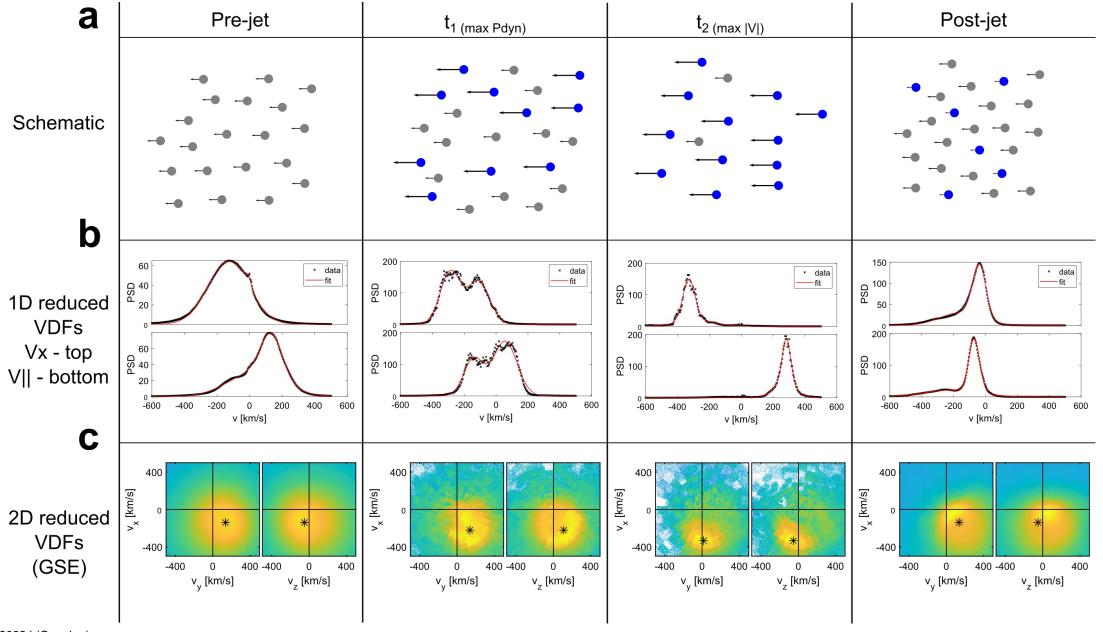
Qpar Magnetosheath:


- High energy ions
- Low temperature anisotropy
- High **B** Variance




Qpar Magnetosheath jet – MMS Burst data


Areas of Interest


- Pre jet = Typical MSH
- $t_1 = P_{dyn}$ peak
- $t_2 = |V|$ peak

Raptis S, et al,. 2022 | (Ongoing)

•

•

Summary & Conclusion

Main points

- Jets are inherently kinetic structures with complicated VDFs throughout their life
- They interact with background plasma (magnetic structures), evolving as they propagate.
- Their plasma moments are not well captured by the full particle moments since at least for part of their lifetime.

Future work

- Evaluate previous statistics (done with low-resolution full particle moments).
- More events to see how properties change on different environments/stages
- Simulations : (TBD Quite some interesting results already though)
- Investigation of wave generation

Thank you for listening and enjoy your time in Greece ③

Extras

Fast/Survey MMS data	Burst MMS data		
Resolution (samples/s)FGM (magnetic field):0.0625FPI (plasma moments ions):4.5EDP (electric field):0.0313	Resolution (samples/s) 0.0078 0.15 0.00012218		
 Pros ✓ Always available ✓ Decent resolution ✓ Can be good for statistics due to availability 	 ✓ Very high resolution ✓ Able to resolve smaller scale structures close to boundary surfaces (e.g. mix of plasma close to magnetopause, bow shock, foreshock etc.) 		
Cons	Cons		
 Not suitable for small scale studies especially these related to electron moments Could be misleading close to boundary surfaces (Magnetopause, Bow shock etc.) due to very similar observational signatures 	 Not available all the time, mostly available close to vital mission objectives (magnetopause, diffusion regions, shock transitions etc.) Hard to do proper large-scale statistics due to biases generated from specific availability and manual choice of intervals 		
More information: Baker, et al. (2016) Space Sci Rev 19			

More information: Baker, et al. (2016) | Space Sci Rev 19

MMS – Jet Database

<u>Fast/Survey</u>			<u>Burst</u>			
9/2015	5 - 9/2020	0	lata	with full burst data		
Subset	Number	Percentage (%)			 Qpar	423
Quasi-parallel	2458	26.7			-	
Final cases	901	10.1			Qperp	34
Quasi-perpendicular	542	5.9			Boundary	35
Final cases	214	2.3			Boundary	55
Boundary	781	8.5			Encapsulated	31
Final cases	191	2.1				
Encapsulated	80	0.9			Close to BS / MP	495
Final cases	60	0.7				400
Other	5335	58.0			Others	428
Unclassified/Uncertain	3789	41.2			L	
Border	1500	16.3				
Data Gap	46	0.5				

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers Palmroth M., Raptis S., et al. (2021) | Annales Kajdic P., Raptis S., et al. (2021) | GRL

Raptis S., Karlsson T., et al. (2022) | Under Review COSPAR 2022 – Athens, Greece | 19/07/22

Raptis S., Karlsson T., et al. (2022) | Nat. Commun

21

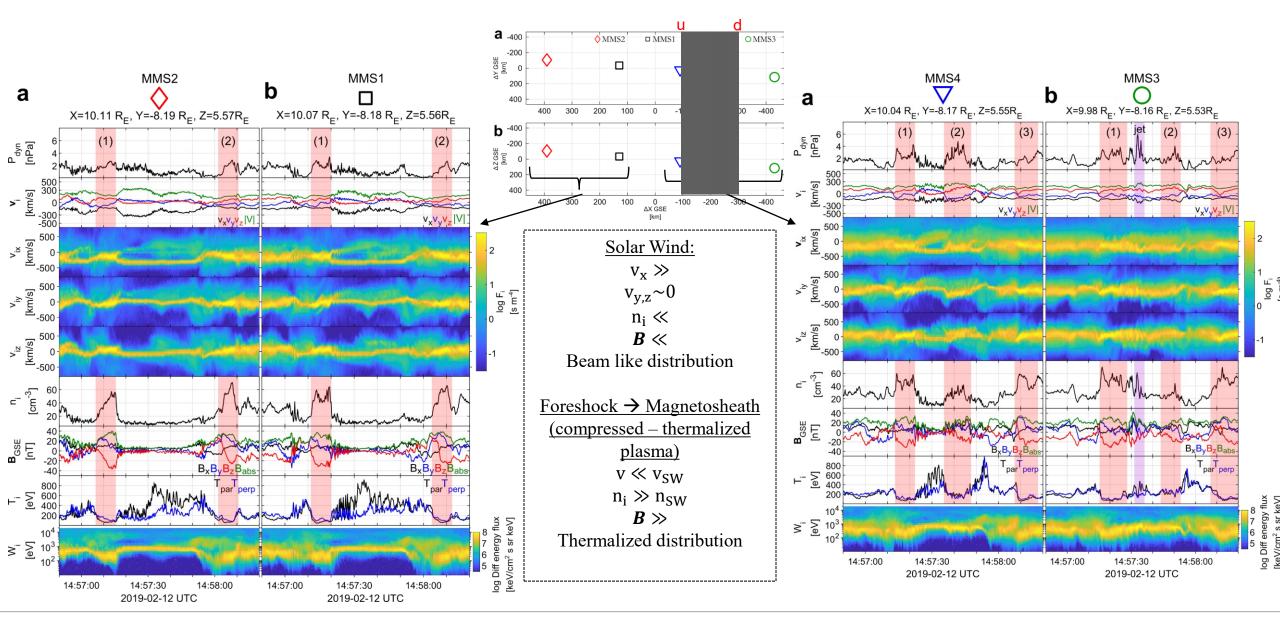
Jets – references update (>2019)

Associated phenomena & effects

- Excitation of surface eigenmodes at magnetopause: Archer et al. (2019, 2021)
- Mirror mode waves and jets : Bianco-Cano et al. (2020)
- Bursty magnetic reconnection at the Earth's magnetopause : Ng et al. (2021)
- Ground-based magnetometer response : Norenius et al. (2021)
- Generation of Pi2 pulsations : Katsavrias et al. (2021)
- B in jets, **Bz variations near magnetopause** : Vuorinen et al. (2021)

Modeling & formation

- Velocity & magnetic field alignment in jets : Plaschke et al. (2020)
- **Classification** of jets using MMS & Neural Networks : Raptis et al. (2020a,2020b)
- Comparison MMS vs simulations : Palmroth et al. (2021)
- Solar wind effect on jet formation : LaMoury et al. (2021)
- Magnetosheath Jets and **Plasmoids** Hybrid Simulations : Preisser et al. (2020)
- Formation of jets in Quasi-perpendicular magnetosheath : Primoz et al. (2021)


And more : Liu et al. (2020a, 2020b), Omelchenko et al (2021), Sibeck et al. (2021), Suni et al. (2021), Tinoco-Arenas et al. (2022) ... etc. etc.

Jets Downstream of Collisionless Shocks

Plaschke et al. (2018)

https://link.springer.com/article/10.1007/s1 1214-018-0516-3

General Observations of MMS

23

Shock transitions with MMS

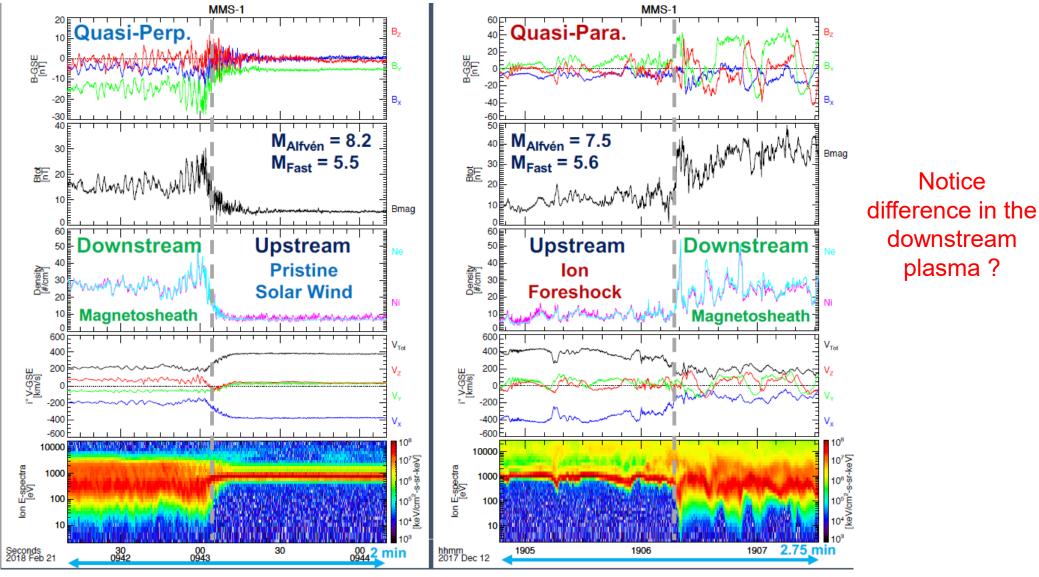


Figure taken from : Drew Turner's talk | SWSG2021

Summarized properties – Quasi Perpendicular

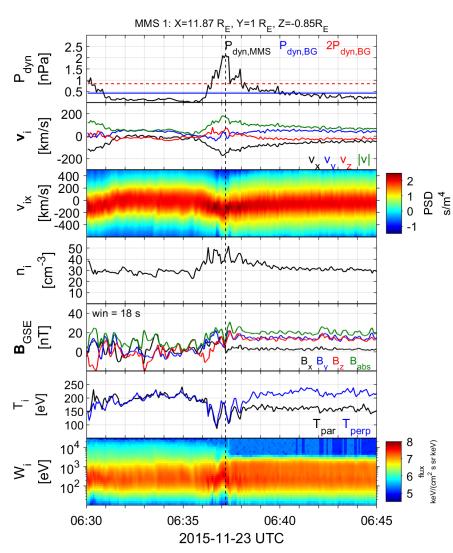
- Less common
- Less Energetic
- Mainly velocity driven
- Very small duration (~4 sec)
- Could be connected to MSH reconnection or FTEs
- Connection mirror mode waves

Qperp Jet

Jets found in Q_{\perp} MSH

Subset	Number	Percentage (%)
Quasi-parallel	2458	26.7
Final cases	901	10.1
Quasi-perpendicular	542	5.9
Final cases	214	2.3
Boundary	781	8.5
Final cases	191	2.1
Encapsulated	80	0.9
Final cases	60	0.7
Other	5335	58.0
Unclassified/Uncertain	3789	41.2
Border	1500	16.3
Data Gap	46	0.5

Raptis S., Karlsson T., et al. (2020) | JGR


COSPAR 2022 – Athens, Greece | 19/07/22

Summarized properties – Boundary

- Hard to estimate their occurrence rate
- Quite energetic and long duration
- Similar properties to Qpar jets
- Could be geoeffective (GMAGs) [Norenius et al. 2021]
- Maybe associated to pressure pulses of SW [Archer et al. 2012]

Boundary Jet

Jets found in the boundary between Q_{\parallel} and Q_{\perp} MSH

Subset	Number	Percentage $(\%)$
Quasi-parallel	2458	26.7
Final cases	901	10.1
Quasi-perpendicular	542	5.9
Final cases	214	2.3
Boundary	781	8.5
Final cases	191	2.1
Encapsulated	80	0.9
Final cases	60	0.7
Other	5335	58.0
Unclassified/Uncertain	3789	41.2
Border	1500	16.3
Data Gap	46	0.5

26