

Shock Reformation Generating High-speed Magnetosheath Jets

Savvas Raptis

Division of Space and Plasma Physics KTH Royal Institute of Technology, Stockholm, Sweden

<u>Co-authors</u> : T. Karlsson (KTH), A. Vaivads (KTH), C. Pollock (Denali Scientific), F. Plaschke (Technische Universität Braunschweig), A. Johlander (IRF, Uppsala), H. Trollvik (KTH), P-A. Lindqvist (KTH)

> EGU 2022 – Vienna, Austria 27/05/2022

Raptis, S., Karlsson, T., Vaivads, A. et al. Downstream high-speed plasma jet generation as a direct consequence of shock reformation. Nature Communications 13, 598 (2022). https://doi.org/10.1038/s41467-022-28110-4

VETENSKAP

OCH KONST

Title = Shock Reformation Generating High-speed Magnetosheath Jets

Main points

- **Shock fronts** become "**embedded plasmoids**" (density enhanced downstream regions).
- Jets forming from the evolution of collisionless shock (reformation & upstream waves)

Implications & open questions

- Is this a general property of shocks (astrophysical, planetary, lab) ?
- If this mechanism is applicable to all jets, are they an extension of the foreshock evolution ?

Future work

- Details on SLAMS/waves Exact properties & evolution study of FCs numbered 1-3
- Simulation comparison Can we find cases like these in simulations ?
- *Statistics* We need more events, currently found ~3 of similar signatures.
- Modeling Can this process explain jets close to MP ? Or are just a subset of "small" jets ?

Article: <u>https://www.nature.com/articles/s41467-022-28110-4</u> GitHub: <u>https://github.com/SavvasRaptis/Jets-Reformation</u>

Popular science version: <u>https://astronomycommunity.nature.com/posts/how-the-solar-wind-slips-through-earth-s-bow-shock</u>

Extras

Burst MMS data		
Resolution (samples/s) 0.0078 0.15 0.00012218		
 ✓ Very high resolution ✓ Able to resolve structures close to boundary surfaces (e.g. mix of plasma close to magnetopause, bow shock, foreshock etc.) 		
Cons		
 Not available all the time, mostly available close to vital mission objectives (magnetopause, diffusion regions, shock transitions etc.) Hard to do proper large scale statistics due to biases generated from specific availability and manual choice of intervals 		

More information: Baker, et al. (2016) | Space Sci Rev 19

SLAMS & wave activity co-moving picture

** See similar example by Liu et al. (2021)

7

MMS – Jet Database

Fast/Survey				Burst		
9/2015	5 - 9/2020	0	loto	with full burat data		
Subset	Number	Percentage (%)	Jeis		◆ Qpar	423
Quasi-parallel	2458	26.7				
Final cases	901	10.1			Qperp	34
Quasi-perpendicular	542	5.9			Boundary	25
Final cases	214	2.3			Boundary	30
Boundary	781	8.5			Encapsulated	31
Final cases	191	2.1			Zhoapodiatod	
Encapsulated	80	0.9			Close to BS / MP	495
Final cases	60	0.7				100
Other	5335	58.0			Others	428
Unclassified/Uncertain	3789	41.2			L	
Border	1500	16.3				
Data Gap	46	0.5				

Raptis S., Karlsson T., et al. (2020) | JGR Raptis S., Aminalragia-Giamini S., et al. (2020) | Frontiers Palmroth M., Raptis S., et al. (2021) | Annales Kajdic P., Raptis S., et al. (2021) | GRL

MMS spacecraft + String of Pearl Configuration

Credits: NASA's Goddard Space Flight Center/Mary Pat Hrybyk-Keith

Shock Reformation – Simulations

More nice sources for review : Burgess & Scholer (2015), Willson (2016)

Jets – references update (>2019)

Associated phenomena & effects

- Excitation of surface eigenmodes at magnetopause: Archer et al. (2019, 2021)
- Mirror mode waves and jets : Bianco-Cano et al. (2020)
- Bursty magnetic reconnection at the Earth's magnetopause : Ng et al. (2021)
- Ground-based magnetometer response : Norenius et al. (2021)
- Generation of Pi2 pulsations : Katsavrias et al. (2021)
- B in jets, **Bz variations near magnetopause** : Vuorinen et al. (2021)

Modeling & formation

- Velocity & magnetic field alignment in jets : Plaschke et al. (2020)
- **Classification** of jets using MMS & Neural Networks : Raptis et al. (2020a,2020b)
- Comparison MMS vs simulations : Palmroth et al. (2021)
- Solar wind effect on jet formation : LaMoury et al. (2021)
- Magnetosheath Jets and **Plasmoids** Hybrid Simulations : Preisser et al. (2020)
- Formation of jets in Quasi-perpendicular magnetosheath : Primoz et al. (2021)

And more : Liu et al. (2020a, 2020b), Omelchenko et al (2021), Sibeck et al. (2021), Suni et al. (2021), Tinoco-Arenas et al. (2022) ... etc. etc.

Jets Downstream of Collisionless Shocks

Plaschke et al. (2018)

https://link.springer.com/article/10.1007/s1 1214-018-0516-3