

# High-speed jets at Earth's magnetosheath & more

Savvas Raptis KTH - Space and Plasma Physics, Stockholm Sweden European Space Agency (ESA), ESTEC, Leiden, The Netherlands

CGS weekly meetings 18/01/2023





European Space Agency

### MMS mission & instrumentation



#### Transient events – weather

Hurricanes



Snowstorms





#### \_ Transient events – weather

**CMEs/Solar Flares** 



Snowstorms



 Fain

CGS weekly meetings | 18/01/23

#### \_ Transient events – weather

**CMEs/Solar Flares** 



Solar cycle, streams, discontinuities





Credits : NASA

#### Transient events – space weather CMEs/Solar Flares



#### Solar cycle, streams, discontinuities



Credits : NASA

6

Foreshock structures & plasma jets



Credits: Vuorinen et al. (2022) https://eos.org/features/space-raindrops-splashing-on-earths-magnetic-umbrella

#### Earth's magnetosphere & shock environment





Courtesy of M. Palmroth, U Helsinki

7

Savvas Raptis - High-speed jets at Earth's magnetosheath

L. B. Wilson (2016)

#### Foreshock & evolution of ULF wavefield



Chen et al. 2021

Savvas Raptis - High-speed jets at Earth's magnetosheath

#### Why do we care? "big picture"

### Dayside Transient Phenomena and Their Impact on the Magnetosphere and Ionosphere

<u>Hui Zhang</u> <sup>⊡</sup>, <u>Qiugang Zong</u> <sup>⊡</sup>, <u>Hyunju Connor</u>, <u>Peter Delamere</u>, <u>Gábor Facskó</u>, <u>Desheng Han</u>, <u>Hiroshi</u> <u>Hasegawa</u>, <u>Esa Kallio</u>, <u>Árpád Kis</u>, <u>Guan Le</u>, <u>Bertrand Lembège</u>, <u>Yu Lin</u>, <u>Terry Liu</u>, <u>Kjellmar Oksavik</u>, <u>Nojan</u> <u>Omidi</u>, <u>Antonius Otto</u>, <u>Jie Ren</u>, <u>Quanqi Shi</u>, <u>David Sibeck</u> & <u>Shutao Yao</u>

<u>Space Science Reviews</u> 218, Article number: 40 (2022) <u>Cite this article</u>

# Transmission of foreshock waves through Earth's bow shock

L. Turc <sup>[]</sup>, O. W. Roberts, D. Verscharen, A. P. Dimmock, P. Kajdič, M. Palmroth, Y. Pfau-Kempf, A. Johlander, M. Dubart, E. K. J. Kilpua, J. Soucek, K. Takahashi, N. Takahashi, M. Battarbee & U. Ganse

Nature Physics (2022) Cite this article

## Downstreamnigh-speed plasma jet generation as a direct consequence of shock reformation

Savvas Raptis <sup>[2]</sup>, Tomas Karlsson, Andris Vaivads, Craig Pollock, Ferdinand Plaschke, Andreas Johlander, <u>Henriette Trollvik & Per-Arne Lindqvist</u>

Nature Communications 13, Article number: 598 (2022) Cite this article



Foreshock and magnetosheath transient phenomena and their effects on planetary magnetospheres.
 Co-organized by PS2
 Convener: Savvas Raptis<sup>ECS</sup> Q | Co-conveners: Heli Hietala Q, Ferdinand Plaschke Q, Tomas Karlsson Q, Christian Mazelle Q

Convener: Savvas Raptis<sup>ELS</sup> **Q** | Co-conveners: Heli Hietala **Q**, Ferdinand Plaschke **Q**, Tomas Karlsson **Q**, Christian Mazelle **Q** Abstract submission

#### (skipping the real scientific reason, i.e., plasma, shock physics, waves etc.)

Research Letter | 🙃 Free Access

Investigating the Role of Magnetosheath High-Speed Jetsin Triggering Dayside Ground Magnetic Ultra-Low Frequency Waves

Boyi Wang 🔀, Yukitoshi Nishimura, Heli Hietala, Vassilis Angelopoulos

First published: 07 November 2022 | https://doi.org/10.1029/2022GL099768

#### **Geophysical Research Letters**<sup>•</sup>

Research Letter | 🖻 Open Access | ⓒ 🚺 😒

### Connection Between Foreshock Structures and the Generation of Magnetosheath Jets: Vasiator Results

J. Suni 🔀, M. Palmroth, L. Turc, M. Battarbee, A. Johlander, V. Tarvus, M. Alho, M. Bussov, M. Dubart, U. Ganse, M. Grandin, K. Horaites, T. Manglayev, K. Papadakis, Y. Pfau-Kempf, H. Zhou



Impact of Upstream Mesoscale Transients on the Near-Earth Environment

ISSI team lead by Primož Kajdič & Xóchitl Blanco-Cano

#### Foreshocks Across The Heliosphere: System Specific Or Universal Physical Processes?

ISSI Team led by H. Hietala (UK) & F. Plaschke (AT)

#### Jets – references update (>2019)

Associated phenomena & effects

- Excitation of surface eigenmodes at magnetopause: Archer et al. (2019, 2021)
- Mirror mode waves and jets: Bianco-Cano et al. (2020)
- Bursty magnetic reconnection at the Earth's magnetopause: Ng et al. (2021)
- Ground-based magnetometer response: Norenius et al. (2021)
- Generation of Pi2 pulsations: Katsavrias et al. (2021)
- B in jets, Bz variations near magnetopause: Vuorinen et al. (2021)
- High-Speed Jets Triggering Dayside Ground ULF: Wang et al (2022)

#### Modeling & formation

- Velocity & magnetic field alignment in jets: Plaschke et al. (2020)
- Classification of jets using MMS & Neural Networks: Raptis et al. (2020a,2020b)
- Comparison MMS vs simulations: Palmroth et al. (2021)
- Solar wind effect on jet formation: LaMoury et al. (2021)
- Magnetosheath Jets and **Plasmoids** Hybrid Simulations: Preisser et al. (2020)
- Formation of jets in Quasi-perpendicular magnetosheath: Primoz et al. (2021)
- Occurrence in relation to CMEs and SIRs: Koller et al. (2022)
- Shock reformation and the formation of high-speed jets: Raptis et al. (2022a)
- Electron acceleration and bow waves in jets: Vuorinen et al. (2022)
- Kinetic structure of jets and partial plasma moments: Raptis et al. (2022b)

And more : Liu et al. (2020a, 2020b), Omelchenko et al (2021), Sibeck et al. (2021), Suni et al. (2021), Tinoco-Arenas et al. (2022) ... etc.

Jets Downstream of Collisionless Shocks

Plaschke et al. (2018)

https://link.springer.com/article/10.1007/s1 1214-018-0516-3

### Magnetosheath high-speed jets

### Magnetosheath jets effects



#### **Definition**

Magnetosheath jets are **transient localized enhancements** of **dynamic pressure** (density and/or velocity increase)

e.g., 200% dynamic pressure enhancement compared to background magnetosheath

#### Related phenomena

Radiation belts Throat aurora Magnetopause reconnection Magnetopause penetration Shock acceleration Magnetopause surface eigenmodes ULF waves Substorms Ground magnetometer detection

Plaschke F. et al. (2018); sketch by H. Hietala | Space Sci. Rev

#### Shock, magnetosheath & jet classification



Raptis, Aminalragia-Giamini et al. (2020) | Front. Astron. Space Sci

### Shock transitions with MMS



### **Recent Results of Jets**

### Summarized properties – Quasi parallel

- Most common
- High dynamic pressure
- Primarily Earthward
- Associated with low temperature (ΔT)
- Associated with high |B| & ΔB

Δβ<0</li>

#### Qpar Jet Jets found in $Q_{\parallel}$ MSH



|   | Subset                 | Number | Percentage $(\%)$ |
|---|------------------------|--------|-------------------|
|   | Quasi-parallel         | 2458   | 26.7              |
|   | Final cases            | 901    | 10.1              |
| 2 | Quasi-perpendicular    | 542    | 5.9               |
|   | Final cases            | 214    | 2.3               |
|   | Boundary               | 781    | 8.5               |
|   | Final cases            | 191    | 2.1               |
|   | Encapsulated           | 80     | 0.9               |
|   | Final cases            | 60     | 0.7               |
|   | Other                  | 5335   | 58.0              |
|   | Unclassified/Uncertain | 3789   | 41.2              |
|   | Border                 | 1500   | 16.3              |
|   | Data Gap               | 46     | 0.5               |
|   |                        |        |                   |

Raptis S., Karlsson T., et al. (2020) | JGR

### Summarized properties – Quasi perpendicular

- Less common
- Less Energetic
- Mainly velocity driven
- Very small duration (~4 sec)
- Could be connected to MSH reconnection, mirror mode waves or FTEs



| Subset                 | Number | Percentage (%) |
|------------------------|--------|----------------|
| Quasi-parallel         | 2458   | 26.7           |
| Final cases            | 901    | 10.1           |
| Quasi-perpendicular    | 542    | 5.9            |
| Final cases            | 214    | 2.3            |
| Boundary               | 781    | 8.5            |
| Final cases            | 191    | 2.1            |
| Encapsulated           | 80     | 0.9            |
| Final cases            | 60     | 0.7            |
| Other                  | 5335   | 58.0           |
| Unclassified/Uncertain | 3789   | 41.2           |
| Border                 | 1500   | 16.3           |
| Data Gap               | 46     | 0.5            |

#### Qperp Jet Jets found in $Q_{\perp}$ MSH

Raptis S., Karlsson T., et al. (2020) | JGR



#### Raptis, Aminalragia-Giamini et al. (2020) | Front. Astron. Space Sci

#### Example: statistics of subset close to bow shock

n = 90



### Burst data of MMS

#### Shock global reformation

#### **Shock Reformation**

*Burgess (1989)*: "the shock exhibits a cyclic behavior ..... cyclic shock reformation;"



Figure 11. The sketch for evolution of shock front. (a) A rippled shock front, (b) a plane shock front, and (c) a rippled shock front. Solid lines and red arrows denote shock front and reflected beams, and N1 and N2 indicate new shock fronts.



Similar definitions : Hao et al. (2016,2017), Liu et al. (2021), Johlander et al. (2022), Raptis et al. (2022a)

Johlander et al. (2022)

### SLAMS – wave activity and reformation



22

### Jet "slipping through" the reformation cycle



Raptis S., et al. 2022a | Nat. Commun.



24

•

•



# Comparison MMS VIasiator



Palmroth, M., **Raptis, S.**, et al. (2021). Magnetosheath jet evolution as a function of lifetime: global hybrid-Vlasov simulations compared to MMS observations, Ann. Geophys., 39, 289–308, doi:10.5194/angeo-39-289-2021

#### Jets in simulations



#### **Case Comparison**



Palmroth M., Raptis S., et al. (2021) | Annales

27

### **Run Details**

|          | Jet search<br>start [s] | Jet search<br>stop [s] | Number<br>of jets |
|----------|-------------------------|------------------------|-------------------|
| Run HM30 | 290                     | 419.5                  | 144               |
| Run HM05 | 290                     | 589.5                  | 293               |
| Run LM30 | 290                     | 669.5                  | 368               |
| Run LM05 | 290                     | 439.5                  | 119               |



|  | Palmroth M., | Raptis S. | , et al. | (2021) | Annales |  |
|--|--------------|-----------|----------|--------|---------|--|
|--|--------------|-----------|----------|--------|---------|--|

|      | IMF [nT]          | IMF | $n  [{\rm cm}^{-3}]$ | $v  [{\rm km  s^{-1}}]$ | Cone [°] | MA  |
|------|-------------------|-----|----------------------|-------------------------|----------|-----|
| HM30 | (-4.3, 2.5, 0.0)  | 5   | 1                    | (-750, 0, 0)            | 30       | 6.9 |
| HM05 | (-5.0, 0.4, 0.0)  | 5   | 3.3                  | (-600, 0, 0)            | 5        | 10  |
| LM30 | (-8.7, 5.0, 0.0)  | 10  | 1                    | (-750, 0, 0)            | 30       | 3.4 |
| LM05 | (-10.0, 0.9, 0.0) | 10  | 3.3                  | (-600, 0, 0)            | 5        | 5   |

#### Limitations & some details

- BS position = Core population heated 3 times compared to SW
- 2D runs
- Electrons are massless charge-neutralizing fluid
- Temperature varies a lot during jets
- Jet is regarded the same if 50% of cells are the same during previous time step.
- Grid size: 30 km/s and 227 km

#### Main differences between MMS & Vlasiator



#### **Comparison MMS & Vlasiator**



Palmroth M., Raptis S., et al. (2021) | Annales

#### An evolution of a jet using Vlasiator



Palmroth M., Raptis S., et al. (2021) | Annales

#### Superposed Epoch Analysis Vlasiator



Palmroth M., Raptis S., et al. (2021) | Annales

#### MMS – Finalized Jet Database

Table 9.1: Classified dataset of magnetosheath jets observed by MMS1 during the period 05/2015 - 06/2020 (N=9196). Final cases correspond to the manually verified jets, used in the papers of this thesis. The number in a parenthesis correspond to the number of jets having full burst data available.

| Subset              | Number         | Percentage $(\%)$ |
|---------------------|----------------|-------------------|
| Quasi-parallel      | 2928(428)      | 31.8              |
| Final cases         | $901 \ (84)$   | 9.8               |
| Quasi-perpendicular | 1229(34)       | 13.6              |
| Final cases         | 213~(3)        | 2.3               |
| Boundary            | 1505(204)      | 16.4              |
| Final cases         | 191  (35)      | 2.1               |
| Encapsulated        | 67(32)         | 0.73              |
| Final cases         | $60 \ (31)$    | 0.65              |
| Other               | 3467(753)      | 37.7              |
| Unclassified        | $1921 \ (255)$ | 20.9              |
| Border              | 1500(495)      | 16.3              |
| Data Gap            | 46(3)          | 0.5               |

https://zenodo.org/record/7085778

Thesis: High-speed jets and related phenomena at Earth's bow shock and magnetosheath

### A lot of data are not fully used (conjunction example)



Currently, visitor at ESA/ESTEC working on conjunction list for multi-mission events

Bursty Bulk Flows (nightside plasma jets) A possible analogy

#### A dayside plasma jet



Plaschke F. et al. (2018) | Space Sci. Rev

Savvas Raptis - High-speed jets at Earth's magnetosheath

CGS weekly meetings | 18/01/23

#### A nightside plasma jet



Plaschke F. et al. (2018) | Space Sci. Rev

Savvas Raptis - High-speed jets at Earth's magnetosheath

CGS weekly meetings | 18/01/23

### Some similarities & differences

Similarities

- Transient events
- High-speed plasma flows
- Both interact with surrounding plasma
- Flow breaking / diversion process (?)



- BBFs studied for more years
- Vastly different criteria in literature
- BBFs are typically longer and faster
- Different origin (reconnection)
- Different plasma environments (n, T)
- MSH (kinetic) vs magnetotail (magnetic)
- Open vs closed field lines

TLDR : different environment, scales, observational/modeling limitations...

#### Some recent results – Observations (MMS)





10

20

15 ω (rad/s) 25

30

Enhancements of vorticity is associated with the high-speed flow and high-energy ion flux (above 10 keV)



Occurrence of Quiet, Dipolarization Front Associated and "Turbulent" Bursty Bulk Flows (BBFs)

| Criteria                  | Earthward<br>BBFs | Tailward<br>BBFs | All BBFs    |
|---------------------------|-------------------|------------------|-------------|
| Quiet JFs S11             | 1231 (58%)        | 150 (58%)        | 1381 (58%)  |
| Solitary DFs S11 ∩ F12    | 238 (11%)         | 9 (3%)           | 247 (10%)   |
| "Turbulent" JFs S11 – F12 | 666 (31%)         | 100 (39%)        | 766 (32%)   |
| Total                     | 2135 (100%)       | 259 (100%)       | 2394 (100%) |

We find that only 10% are associated solitary sharp and strong dipolarization of the magnetic field

> https://zenodo.org/record/7009706 Richard et al. (2022) | GRL

Savvas Raptis - High-speed jets at Earth's magnetosheath

400

200

Zhang et al. (2019) | GRL

#### Conclusion





Thank you for listening ③

Merkin et al. (2019)

B<sub>Z</sub> [nT]

Vuorinen et al. (2022)

40

#### Extras

#### **Dayside Transient Phenomena**



(unpublished data - Ongoing work)

### A lot of data are not fully used (conjunction example)



Currently, at ESA ESTEC working on conjunction lists for bow shock & MSH

#### **Classification Cluster**



Karlsson T., Raptis S., et al. (2021) | JGR

### Summarized properties – Boundary

- Hard to estimate their occurrence rate
- Quite energetic and long duration
- Similar properties to Qpar jets
- Maybe associated to pressure pulses of SW [Archer et al. 2012]



Jets found in the boundary between  $Q_{\parallel}$  and  $Q_{\perp}$  MSH



| Subset                 | Number | Percentage (%) |
|------------------------|--------|----------------|
| Quasi-parallel         | 2458   | 26.7           |
| Final cases            | 901    | 10.1           |
| Quasi-perpendicular    | 542    | 5.9            |
| Final cases            | 214    | 2.3            |
| Boundary               | 781    | 8.5            |
| Final cases            | 191    | 2.1            |
| Encapsulated           | 80     | 0.9            |
| Final cases            | 60     | 0.7            |
| Other                  | 5335   | 58.0           |
| Unclassified/Uncertain | 3789   | 41.2           |
| Border                 | 1500   | 16.3           |
| Data Gap               | 46     | 0.5            |

#### Raptis S., Karlsson T., et al. (2020) | JGR

45

#### **Comparison MMS & Vlasiator**



Palmroth M., Raptis S., et al. (2021) | Annales

#### **Global Shock Reformation Picture**



Raptis S., et al. (2022a) | Nat. Commun.

Savvas Raptis - High-speed jets at Earth's magnetosheath

CGS weekly meetings | 18/01/23

#### Upstream whistlers paper V



#### Local & Global Shock properties



Local Measurements (e.g., MMS4)

 $\theta_{Bn} \approx 65 - 80^{\circ}$  (large variations)

Global (OMNI) + BS model (e.g., Farris et al.)

 $\theta_{Bn} \approx 25^{\circ}$ 

Consistent with FCS (i.e., SLAMS) acting locally as Qperp shocks

<u>Turner et al. 2021 (HFA)</u>: 38.5 (global) 80.3 (local)

#### Scale comparison (e.g., Turner et al. 2021)



#### **SLAMS** self-reformation

CGS weekly meetings | 18/01/23

"verv" rough comparison

#### Jet evolution in Qpar Magnetosheath



Raptis S, et al,. 2022b | GRL

# Extras Neural Networks

### **Evaluation Metrics (Classification)**



#### **Evaluation Metrics (Regression)**



Source: https://gist.github.com/thomasnield

#### **Neural Networks**



\*Video Courtesy: 3Blue1Brown (Check his YouTube page. It's great!)

### Application on forescasting SEPs



Aminalragia-Giamini, Raptis et al. (2021) | J. Space Weather Space Clim



loss = data fit + PDE residual + ICs fit + BCs fit

Idea = If output is a differentiable quantity with respect to an input = can compute PDEs = combined loss functions

#### Proposing a new model

