

Characterizing Earth's Magnetosheath and High-Speed Downstream Jets using Machine Learning

Savvas Raptis¹, Tomas Karlsson², Sigiava Aminalragia-Giamini³ + (many others)

¹APL ²KTH ³SPARC

SR acknowledges the support by John Hopkins University Applied Physics Laboratory independent R&D fund

savvas.raptis@jhuapl.edu

Introduction (Neural Networks)

Neural Networks & Backpropagation

Convolutional Neural Network (CNN) Layers

CENTER FOR GEOSPACE STORMS

GS

<u>Convolution</u> Extract features & keep spatial relationship Pooling/Subsampling Reduce dimensionality & retain information

Convolved

Feature

Image

*Figure Courtesy: Cambridge Spark Ltd

Introduction (Earth's Shock & Magnetosheath)

CENTER FOR GEOSPACE STORMS

⊰(**©**GS

Shock transition (Theory & "initial" data)

CENTER FOR GEOSPACE STORMS

৬১

1D Isotropic and adiabatic one fluid plasma shock transitions

Bow shock transition (reality)

- <u>Reality though is more complicated (as expected...)</u>:
- 3D & kinetic effects
- Foreshock
- Turbulence
- Reconnection
- Non linear effects
- Evolution of plasma waves
- SLAMS, Shocklets, Magnetosheath Jets etc.
- Solar wind condition variability
- Transient phenomena (e.g. CMEs)

Earth's shock and magnetosphere

CENTER FOR GEOSPACE STORMS

 $(\bigcirc$

GS

Courtesy of M. Palmroth, U Helsinki / Edited by S. Raptis

Qpar & Qperp shocks

CENTER FOR GEOSPACE STORMS

(**©**GS

Raptis, Aminalragia-Giamini et al. (2020) | Front. Astron. Space Sci

Shock transitions with MMS

GS

 $(\bigcirc$

A common problem

CENTER FOR GEOSPACE STORMS

GS

Previous Results

Big picture

Relevant Paper #1

Big picture

(CGS

Raptis, Aminalragia-Giamini et al. (2020) | Front. Astron. Space Sci

CENTER FOR GEOSPACE STORMS

GS

 $(\mathbb{O}$

Big picture

Relevant Paper #3

SC3 = Downstream satellite SC1 = Upstream satellite

Confirm Paper #1 with CL

- Confirmed*
- Relation energetic ions
- Flux & B variance > Q

CENTER FOR GEOSPACE STORMS

GS

Karlsson T., Raptis S., et al. (2021) | JGR

New Results

(CGS)

Dataset & caveats

Varying separation, multispacecraft analysis (i.e., timing, curlometer etc.

Relevant campaigns

 near solar wind monitor campaign (2019)

CENTER FOR GEOSPACE STORMS

JS

- ~10k points (~10s res)
- 2 instruments
 - Hot Ion Analyzer (HIA)
 - Composition Distribution Function (CODIF) analyzer
- Time lag (upstream downstream) ~10s – 2min
- Transient localized events (e.g., MSH jets, shocklets, SLAMS, etc.)

GOAL: Can we use info from SC3 to characterize SC4 & create a synthetic energy spectrum ?

Pre-process steps

- 1. Raw Data
- 2. Time-Shift (cross-corr normalized B)

Steps

GS

 \bigcirc

CENTER FOR GEOSPACE STORMS

- 3.
- 4.

23

GS

Pre-process steps

- 1. Raw Data
- 2. Time-Shift (cross-corr normalized B)

Steps

- 3. Remove transients
- 4. Resample & Rebin
- 5. Filter (optional)

GS

 \bigcirc

Basic idea (NN)

(CGS

Input: x: Different downstream features (e.g., n, B, etc.)

Preliminary results (test set)

10⁴

10³

10²

10

10³

10

10⁴

 10^{3}

10²

10

-20

n

08:20 2009-03-24 UTC

08:40

08:00

W_i (eV)

Artificial - W_i (eV)

Real - W_i (eV)

B_{GSE} (nT)

B_{GSE} (nT)

CENTER FOR GEOSPACE STORMS

GS

 $(\bigcirc$

Karlsson T., Raptis S., et al. (2021) | JGR

09:00

log Diff. energy flux

log Diff. energy flux

P G 2 9 2 log Diff. energy flux

Basic idea (NN)

CENTER FOR GEOSPACE STORMS

(CGS

Input: x: Different downstream features (e.g., n, B, etc.)

Basic idea (CNN)

Input:

x: Different downstream features (e.g., n, B, etc.)

y: Information forward in time (e.g., +10 points with 10 sec resolution) – Skip cross-correlating signals

Preliminary results (test set)

Karlsson T., Raptis S., et al. (2021) | JGR LMAG2023

APL

Raptis et al. (ongoing)

GS

()

Discussion & Conclusion

• Preliminary results: generate upstream data by training a ML model with downstream (*the same applies for upstream to downstream*).

<u>Future</u>

- More data are needed (hard to get, manual labor involved)
- Many things to be done (data cleaning, better architectures, better validation, metrics etc.)
- Smarter problem definition (not produce whole spectra but parts of it, specific bins using multiple models etc.)
- Can we combine our knowledge of shocks to generate synthetic data (e.g., using Physics-informed machine learning)
- Include other missions/objectives (THEMIS, MMS, etc.)

Extra

-(CGS

Model Basic Properties

Metrics:

(normalized)

Basic Architectures:

RMSE*train* : 0.007 RMSE*train* : 0.07 R_{train}^2 : 0.8

- Neural Network (60-80-100-80-60-1)
- CNN (16/[4,4] 8/[2,2]-400-200-100-1)
- XGBoost (various variations)

Extras:

early-stopping based on training loss.

Hyperparameters (NN/CNN):

- Epochs (based on extra)
 - \approx 50 (batch ~128), •
 - \approx 500 (batch ~length(x train)) •
- Optimizers: Adam/Nadam/SGD
- Activation function : Relu (+)
- Loss function minimization: MSE
- Train/Test split: Manual (few variations)

RMSE*test*: 0.08 R_{test}^2 : 0.7

MSE_{*test*} : 0.01

Example of OMNI miss-match

Preliminary results (moments)

Density:

Real = 3.92 NN = 4.039

Interesting results with XGboost

CNN

