CENTEREOR//. 4/ ./ 7/ # 7
@G S GEOSPACE STORMS .~

i ! / W S S
[ y !/

i ' / /s

i

T '

” - :
7
J

e ) —
KIouligou-

S. Raptis?, V. Merkin, A. Sciolal, S. Ohtani’, K.

IJHU/APL

2University of New Hampshire

savvas.raptis@jhuapl.edu https://savvasraptis.github.io



mailto:savvas.raptis@jhuapl.edu
https://savvasraptis.github.io/

CGS Science Theme 1

Multiscale plasma sheet transport, ring current build-up, and their global impacts throughout stormtime geospace
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Today we'll highlight
- 3 published works (2 in 2023 and one last summer)
- 1 ongoing effort
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Contribution of plasma sheet bubbles
to stormtime ring current buildup
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Full paper ——»

Stormtime Global Convection - Geotail (1994 — 2022)
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Bursty Magnetic Flux Contribution Ongoing work

Histograms are normalized per phase
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Dawn — Dusk Asymmetry of BBFS/BEIs

Bursty Interval Occurrence: ~2-4% quiet times | ~4-8% main phase
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Same message Across all combinations = Dawn preference during main phase and Dusk during quiet

Error bars = min/max based on definition of bursty interval
Different sets = Different definition of dawn/dusk Consistent with Nagai+ 2023

Reconnection moving Dawnward
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AGU 2024 — SM33C | Savvas Raptis — Stormtime Magnetotail Dynamics January 30, 2025 9




Summary

Contribution of Mesoscale Burst Intervals in tail dynamics remains a major unanswered question*
However, recent simulation and observation efforts have showed us that :

(a) During the initial buildup of the ring current at least 50% of the net transport below 6 Rg
Is due to plasma sheet bubbles (Sciola+ 2023).

(b) During storms dawnside BBFs create multiscale enhancement of the dawnside AEJ and
cause large dB/dt (Kareem+2023).

(c) Stormtime convection is associated to more dipolar field at dusk and faster flow at dawn
(Raptis+2024).

(d) BBFs contribution to magnetic flux transport is elevated during storms, accounting for
30-50% (Ongoing).

(e) BBFs are more frequent during storms, and are more frequent at dawn during the main
phase and at dusk during quiet/recovery times (Ongoing).

See also Anusree Devanandan’s Poster: SM13A-2769 and Joel Tibbetts Poster: SM13A-2772 *See Decadal mission recommendation: “Links”
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Imaging with MAGE |

*  Observing system simulation
experiment (OSSE) for energetic
neutral atom (ENA) imagers
based on MAGE
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